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Jérôme Leroux and Sylvain Schmitz

EJCIM 2020

1/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Outline

vector addition systems (VAS)
I central model of computation

reachability problem
I hard conceptually and computationally

I decision via decomposition algorithm

this lecture
I complexity upper bounds

2/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Outline

vector addition systems (VAS)
I central model of computation

reachability problem
I hard conceptually and computationally

I decision via decomposition algorithm

this lecture
I complexity upper bounds

2/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Outline

vector addition systems (VAS)
I central model of computation

reachability problem
I hard conceptually and computationally

I decision via decomposition algorithm

this lecture
I complexity upper bounds

2/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Vector Addition Systems (with States)

3/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Vector Addition Systems (with States)

3/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Vector Addition Systems (with States)

3/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Vector Addition Systems (with States)

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste?

Yes, (∞,0) is reachable

3/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Vector Addition Systems (with States)

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste? Yes, (∞,0) is reachable

3/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Importance of the Problem
Modelling discrete resources
items, money, molecules, active threads, active data
domain, . . .

Central decision problem
Large number of problems interreducible with
reachability in vector addition systems

I correctness of population protocols

I satisfiability of logics over data words

I provability of !-Horn linear logic

I . . .
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Current Upper Bounds
F0(x) = x+1

F1(x) =

x+1 times︷             ︸︸             ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷             ︸︸             ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷             ︸︸             ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem ([Leroux & S. ’19])

VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem ([Leroux ’20])

VAS Reachability reduces to bounded VAS Reachability
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Decomposition Algorithm

Ernst W. Mayr
[Mayr ’81]

S. Rao Kosaraju
[Kosaraju ’82]

Jean-Luc Lambert
[Lambert ’92]
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)
c

Path
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“Simple Runs” (Θ Condition)
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×1

unbounded path

×
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(0,0) (2,0) (4,0) (6,0)
(0,−1)

7/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Characteristic System

0+1 ·a−1 ·b= c
1+1 ·a−2 ·b= 0

Solution for a, b

[1 · , 1 · ]

Solution Path

(0,−1)

+ ×k
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(∞,∞)

a (1,1)
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c
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“Simple Runs” (Θ Condition)
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(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Characteristic System

0+1 ·a−1 ·b= c
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×1
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

7/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×2
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×3
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

(0,1)

(∞,∞)

−

pump down
(∞,∞)

(∞,0)

=

remainder
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]
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“Simple Runs” (Θ Condition)
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×3

solution path

×1

remainder

×3

pump down

×3
(0,1)

(6,0)
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,
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How to Decompose
[Mayr’81, Kosaraju’82, Lambert’92]

· · · · · ·
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How to Decompose
[Mayr’81, Kosaraju’82, Lambert’92]

No unbounded path : Case of bounded ‘∞’

· · · · · ·(∞,∞)

(1,1)

(-1,-2)

(0,1) (1,∞)

saturate

· · · · · ·(∞,∞)

(1,1)

(-1,-2)

(0,1) (1,2)

· · · · · ·(∞,∞)

(1,1)
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How to Decompose
[Mayr’81, Kosaraju’82, Lambert’92]

No unbounded path : Case of bounded transitions

· · · · · ·(∞,∞)

(1,1)

(-1,-2)

(0,1) (1,1)
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How to Decompose
[Mayr’81, Kosaraju’82, Lambert’92]

No unbounded path : Case of bounded transitions

· · · · · ·(∞,∞)

(1,1)

(-1,-2)

(0,1) (1,1)

unfold

· · · · · ·(∞,∞) (∞,∞) (∞,∞)(0,1) (∞,∞) (∞,∞)(∞,∞) (1,1)(∞,∞)
(1,1) (-1,-2)

· · · · · ·(∞,∞) (∞,∞) (∞,∞)(0,1) (∞,∞) (∞,∞)(∞,∞) (1,1)(∞,∞)
(1,1)(-1,-2)
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How to Decompose
[Mayr’81, Kosaraju’82, Lambert’92]

No pumping path or :

· · · · · ·(∞,∞)

(1,0)

(-1,-2)

(0,2) (2,3)
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How to Decompose
[Mayr’81, Kosaraju’82, Lambert’92]

No pumping path or :

· · · · · ·(∞,∞)

(1,0)

(-1,-2)

(0,2) (2,3)

track value

· · · · · ·(∞,2) (2,3)(0,2)

(1,0)

· · · · · ·(∞,2) (∞,0)(∞,2)(0,2) (2,3)(∞,0)

(1,0) (1,0)

(-1,-2)
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Termination

Ordinal Ranking Function

α0

∨

α1

∨

α2

∨...
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Technical Ingredients
[Leroux & S. ’19]

1. new ranking function:

order typeωd+1

ωω
3

in [Leroux & S. ’15]

ωω · (d+1) in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis
improves complexity from F2d+2 to Fd+4
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Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

(

{
effects of cycles C | t ∈ C

}

)
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑

t∈G
rank(t) ∈N

d+1

(added componentwise) (ordered lexicographically)

Example

p q

(0,1,−1)
3

(0,−1,2)
3

(0,0,0)
3

(1,0,0)
3

rank(G) = (4,0,0,0)

Example

p q

(1,1)
1

(−1,0)
1

(0,−1)
1

(0,0)
0

(0,0)
0

rank(G) = (0,3,2)
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Decreasing Ranks

Recall decomposition steps:

I no : ∅

I no :

I bounded ‘∞’: saturate
I bounded transitions: unfold

I no or no : track value
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I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution

z

x
u

y

v

x

z

u

y
v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution

z

x
u

y

v

x

z

u

y
v

∆

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution

z

x
u

y

v

∆

1
2x

1
2u

1
2y

1
2y

1
2y

1
2y

1
2v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution

z

x
u

y

v

2∆

x
u

2y
v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution

z

x
u

y

v

x

z

z

u

−y−y

v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution
e.g., [ax,bu,cy,dv]

z

x
u

y

v

x

z

z

u

−y−y

v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution
e.g., [ax,bu,cy,dv]

z

x
u

y

v

x

z

z

u

−y−y

v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution
e.g., [ax,bu,cy,dv]

z

x
u

y

v

x

z

z

u

−y−y

v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Decreasing Ranks when Unfolding

G

T \T ′: not in any homo-
geneous solution

T ′: in an homogeneous solution
e.g., [ax,bu,cy,dv]

z

x
u

y

v

x

z

z

u

−y−y

v

I assume V ′ =V.
I pick a cycle ofG using every transition in T

e.g., x+ z+u+ y+ v
I the effect of the cycle is∆∈V
I as V=V ′, there exists a rational linear combination of

cycles of T ′ with effect∆
e.g.,∆= 1

2 (x+u+4y+ v)
I then 2∆= 2(x+ z+u+ y+ v) = 2 1

2 (x+u+4y+ v)
I thus x+2z+u−2y+ v= 0
I choose k∈N such that kc> 2: [kax,kbu,kcy,kdv]

still a hom. sol.
I then [(ka+1)x,2z,(kb+1)u,(kc−2)y,(kd+1)v]

is also a hom. sol.
I thus T = T ′

14/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Complexity Upper Bounds

15/21



Vector Addition Systems Decomposition Algorithm 2019 Update Complexity Upper Bounds

Ordinals

0
1
2
3
4
5
6
7

...
ω

ω+1
ω+2
ω+3

...
ω ·2

ω ·2+1
ω ·2+2

...
ω ·3

ω ·3+1

...
ω2

ω2 +1
ω2 +2
ω2 +3
ω2 +4

...
ω2 +ω

ω2 +ω+1
ω2 +ω+2
ω2 +ω+3
ω2 +ω+4

...

I Cantor normal form for ordinals α < ε0:

α=ωα1 · c1 + · · ·+ωαk · ck
α > α1 > · · ·> αk in CNF , 0< c1, . . . ,ck <ω

I norm of ordinals α < ε0: “maximal
constant”

Nα
def
= max

16i6k
(max(Nαi,ci))

Example
N7 = 7 N(ω ·3+1) = 3

N(ω2 +ω) = 2 N(ω2 +ω+4) = 4
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i(n0)

Example (g(x) = x+1, n0 = 2)
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> 2

> 1

> 0

Proposition
Descending sequences of ordinals
in α < ε0 controlled by g and n0 have a
maximal length, noted Lg,α(n0).
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Descent Equation
(g,n0)-controlled descending sequence α0,α1,α2,α3, . . .
over an ordinal α:

normsNαi

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

α0
α1

α2

α3

>

>

>

>

>

>

over the suffix
α1,α2,α3, . . . , ∀i > 0,

Nαi 6 g
i−1(g(n0))

Lg,α(n0) = max
α0∈α,Nα06n0

1+Lg,α0(g(n0))
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Descent Equation

Lg,α(n0) = max
α0∈α,Nα06n0

1+Lg,α0(g(n0))

Consequence of (S. ’14, ’16)
For g elementary, Lg,ωd+1(n0)6 Fd+4(e(n0)) for some
elementary function e.
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The Length of Decomposition Branches
[Leroux & S. ’19]

α0

ωd+1

∨

∨

α1

∨

α2

∨...

Corollary
The decomposition tree is of size at most Fd+4(e(n)) for
some elementary function e.
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Current Upper Bounds
F0(x) = x+1

F1(x) =

x+1 times︷             ︸︸             ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷             ︸︸             ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷             ︸︸             ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem ([Leroux & S. ’19])

VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem ([Leroux ’20])

VAS Reachability reduces to bounded VAS Reachability
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A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of scattered subwords of the words in
the language L

Example (scattered subword ordering)
aba6∗ baaacabbab
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question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?
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question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

Theorem (Habermehl, Meyer & Wimmel’10)
Given a labelled VAS V and configurations source and
target and its decomposition, one can construct a finite
automaton for ↓L(V,source,target) in polynomial time.

Corollary
The Downwards Language Inclusion is in Ackermann.
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A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

Corollary
The Downwards Language Inclusion is in Ackermann.

Theorem (Zetzsche’16)
The Downwards Language Inclusion is Ackermann-hard.
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Perspectives

1. complexity gap for VAS reachability
I Tower-hard [Czerwinski et al.’19]

I decomposition algorithm: requires Fω = Ackermann time,
because downward language inclusion is Fω-hard [Zetzsche’16]

2. reachability in VAS extensions?
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS
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