Decomposition Algorithm 00000

2019 Update 0000 Complexity Upper Bounds

Reachability in Vector Addition Systems

Jérôme Leroux and Sylvain Schmitz

EJCIM 2020

Decomposition Algorithm 00000

2019 Update 0000 Complexity Upper Bounds

Outline

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

this lecture

complexity upper bounds

Decomposition Algorithm 00000

2019 Update 0000 Complexity Upper Bounds

Outline

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

this lecture

complexity upper bounds

Decomposition Algorithm 00000

2019 Update 0000 Complexity Upper Bounds

Outline

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

this lecture

complexity upper bounds

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

VECTOR ADDITION SYSTEMS (WITH STATES)

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

VECTOR ADDITION SYSTEMS (WITH STATES)

Decomposition Algorithm

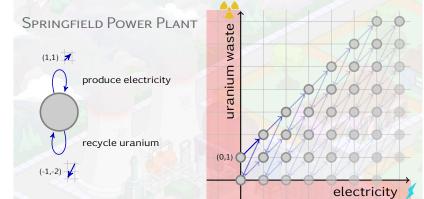
2019 Update 0000 Complexity Upper Bounds

VECTOR ADDITION SYSTEMS (WITH STATES)

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

VECTOR ADDITION SYSTEMS (WITH STATES)

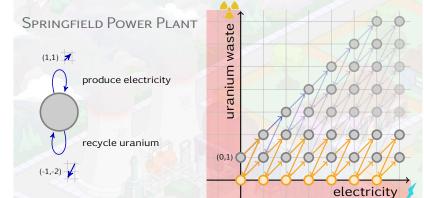


Can we produce unbounded electricity with no leftover uranium waste?

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

VECTOR ADDITION SYSTEMS (WITH STATES)



Can we produce unbounded electricity with no leftover uranium waste? Yes, $(\infty, 0)$ is reachable

2019 Update 0000 Complexity Upper Bounds

Importance of the Problem

MODELLING DISCRETE RESOURCES items, money, molecules, active threads, active data domain, ...

CENTRAL DECISION PROBLEM

Large number of problems interreducible with reachability in vector addition systems

- correctness of population protocols
- satisfiability of logics over data words
- provability of !-Horn linear logic

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

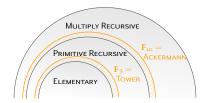
CURRENT UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overline{F_0 \circ \cdots \circ F_0}(x) = 2x+1 \\ F_2(x) &= \overline{F_1 \circ \cdots \circ F_1}(x) \approx 2^x \\ F_3(x) &= \overline{F_2 \circ \cdots \circ F_2}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\text{cw}}(x) &= F_{x+1}(x) \qquad \approx \text{ackermann}(x) \end{split}$$

UPPER BOUND THEOREM ([LEROUX & S. '19]) VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d Decomposition Algorithm 00000 2019 Update 0000 Complexity Upper Bounds

CURRENT UPPER BOUNDS

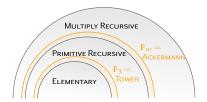
$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overline{F_0 \circ \cdots \circ F_0}(x) = 2x+1 \\ F_2(x) &= \overline{F_1 \circ \cdots \circ F_1}(x) \approx 2^x \\ F_3(x) &= \overline{F_2 \circ \cdots \circ F_2}(x) \approx tower(x) \\ &\vdots \\ F_{\mathfrak{W}}(x) &= F_{x+1}(x) \qquad \approx ackerman(x) \end{split}$$



UPPER BOUND THEOREM ([LEROUX & S. '19]) VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d Decomposition Algorithm 00000 2019 Update 0000 Complexity Upper Bounds

CURRENT UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overline{F_0 \circ \cdots \circ F_0}(x) = 2x+1 \\ F_2(x) &= \overline{F_1 \circ \cdots \circ F_1}(x) \approx 2^x \\ F_3(x) &= \overline{F_2 \circ \cdots \circ F_2}(x) \approx tower(x) \\ &\vdots \\ F_{00}(x) &= F_{x+1}(x) \qquad \approx ackermann(x) \end{split}$$



UPPER BOUND THEOREM ([LEROUX & S. '19]) VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

DECOMPOSITION ALGORITHM

Ernst W. Mayr [Mayr '81]

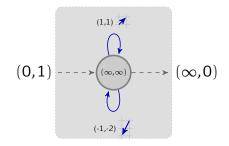
S. Rao Kosaraju [Kosaraju '82]

Jean-Luc Lambert [Lambert '92]

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

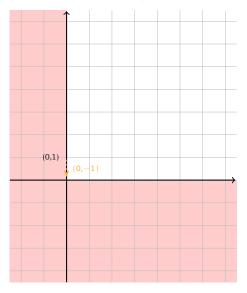
"Simple Runs" (Θ Condition)



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

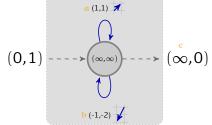


Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



CHARACTERISTIC SYSTEM

 $0 + 1 \cdot a - 1 \cdot b = c$ $1 + 1 \cdot a - 2 \cdot b = 0$

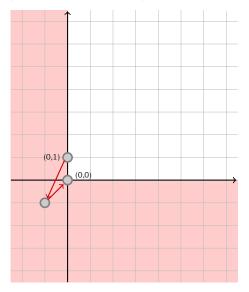
Solution for a, b $[1 \cdot \mathbf{x}, 1 \cdot \mathbf{y}]$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



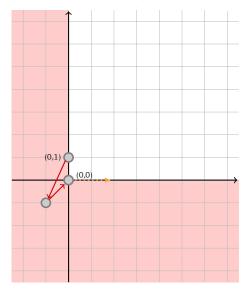
solution path

Decomposition Algorithm

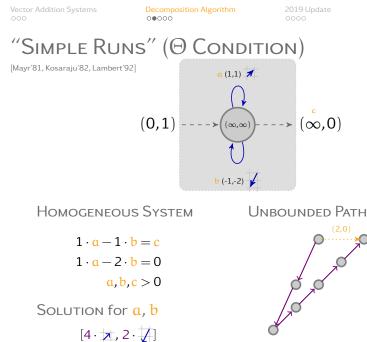
2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

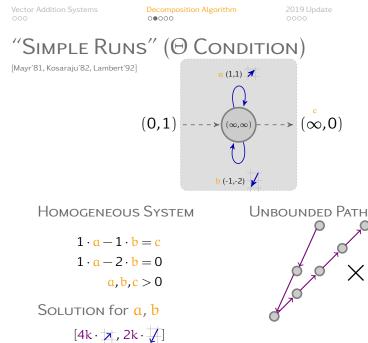
[Mayr'81, Kosaraju'82, Lambert'92]



solution path



Complexity Upper Bounds



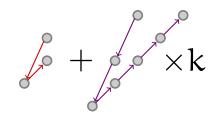
Complexity Upper Bounds



Characteristic System Path

 $0 + 1 \cdot \mathbf{a} - 1 \cdot \mathbf{b} = \mathbf{c}$ $1 + 1 \cdot \mathbf{a} - 2 \cdot \mathbf{b} = 0$

Solution for a, b $[(1+4k) \cdot \mathbf{x}, (1+2k) \cdot \mathbf{y}]$

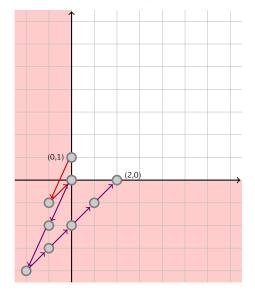


Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



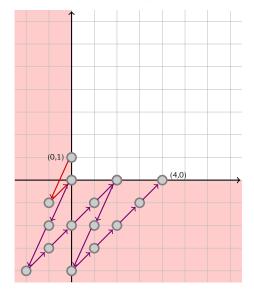
solution path

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



solution path

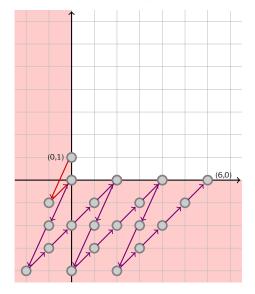
unbounded path

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



unbounded path

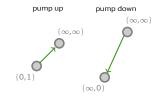
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

Pumpable Paths



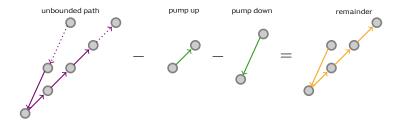
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

Pumpable Paths



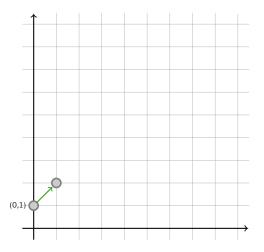
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

pump up



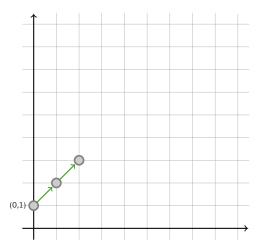
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

pump up

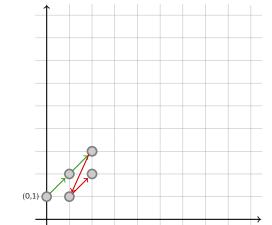


Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



^{pump up}

solution path

00000

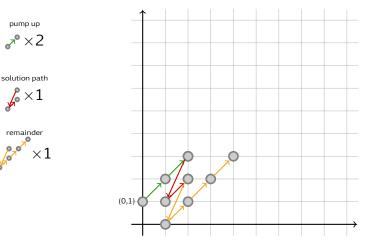
"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

pump up **~**×2

 ~ 1

eman. remainder



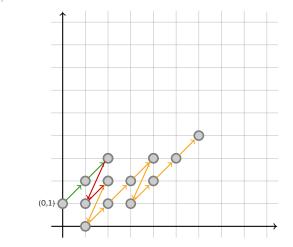
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

pump up

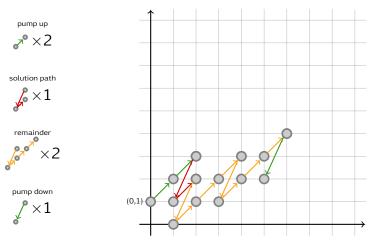


solution path

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

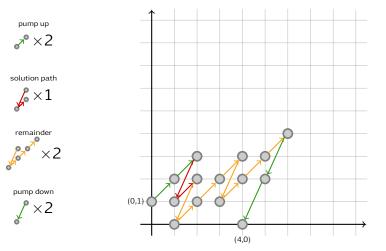
"Simple Runs" (Θ Condition)



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

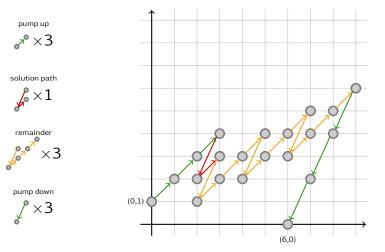
"Simple Runs" (Θ Condition)



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

"Simple Runs" (Θ Condition)



Decomposition Algorithm

 \rightarrow \rightarrow

2019 Update 0000 Complexity Upper Bounds

DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"?

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? yes

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? no

decompose

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

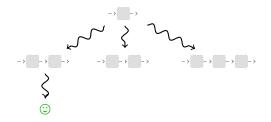
can we build a "simple run"? no

decompose

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds 0000000

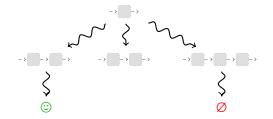
DECOMPOSITION ALGORITHM



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

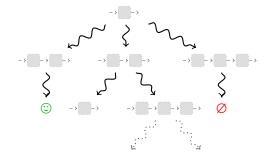
DECOMPOSITION ALGORITHM



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

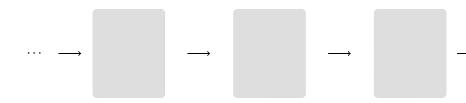
DECOMPOSITION ALGORITHM



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No simple path 🖌

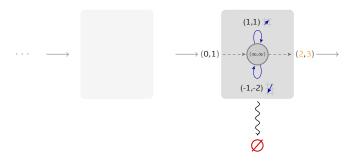
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

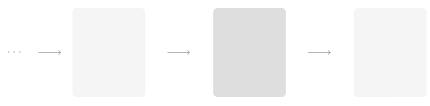
No simple path 🖌



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path \mathcal{A}^{*} : Case of bounded ' ∞ '

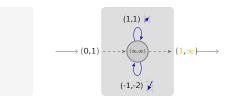
Decomposition Algorithm

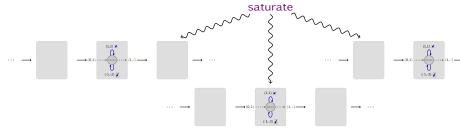
2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path \mathcal{A}^{*} : Case of bounded ' ∞ '





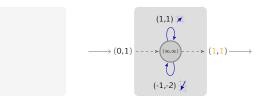
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path : Case of bounded transitions



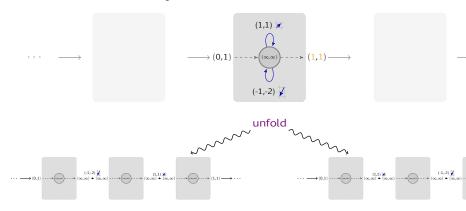
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path : Case of bounded transitions



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No pumping path a or g:

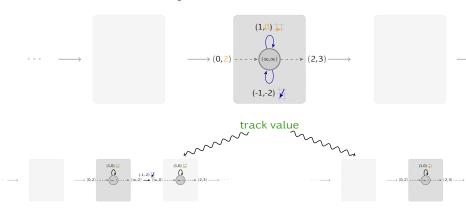
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

How to Decompose

[Mayr'81, Kosaraju'82, Lambert'92]

No pumping path a or g:



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Ordinal Ranking Function

 α_0

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Termination

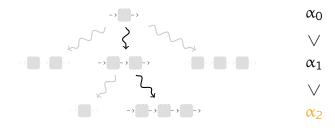
Ordinal Ranking Function

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Termination

Ordinal Ranking Function

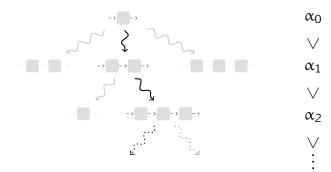


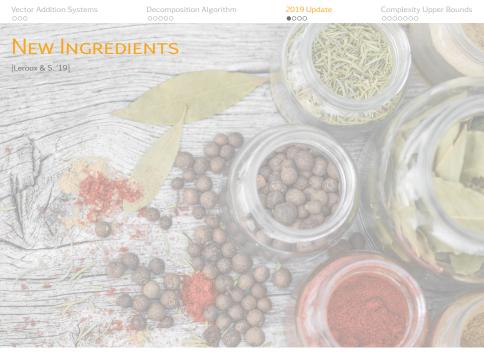
Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Termination

Ordinal Ranking Function





Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

TECHNICAL INGREDIENTS

[Leroux & S. '19]

1. new ranking function:

```
order type \omega^{\mathrm{d}+1}
```

 ω^{ω^3} in [Leroux & S. '15] $\omega^{\omega} \cdot (d+1)$ in [S. '17]

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from ${
m F_{2d+2}}$ to ${
m F_{d+4}}$

Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

TECHNICAL INGREDIENTS

[Leroux & S. '19]

1. new ranking function:

order type ω^{d+1}

 $\omega^{\omega^3} \text{ in [Leroux \& S. '15]} \\ \omega^\omega \cdot (d+1) \text{ in [S. '17]}$

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

Decomposition Algorithm

2019 Update

Complexity Upper Bounds

TECHNICAL INGREDIENTS

[Leroux & S. '19]

1. new ranking function:

order type ω^{d+1}

 $\omega^{\omega^3} \text{ in [Leroux \& S. '15]} \\ \omega^\omega \cdot (d+1) \text{ in [S. '17]}$

2. refined analysis of pumpable paths: Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

Decomposition Algorithm

2019 Update

Complexity Upper Bounds

TECHNICAL INGREDIENTS

[Leroux & S. '19]

1. new ranking function:

order type ω^{d+1}

 $\omega^{\omega^3} \text{ in [Leroux \& S. '15]} \\ \omega^\omega \cdot (d+1) \text{ in [S. '17]}$

2. refined analysis of pumpable paths: Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

Rank of a Transition

For a transition t in $(0,1) \xrightarrow{(\infty,0)} (\infty,0)$

$\{ effects of cycles C \mid t \in C \}$

(1,1) 🗖

Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

Rank of a Transition

For a transition t in (0,1)

 $\left\{ m \cdot \not > + n \cdot \not < \mid m \geqslant 0, n > 0 \right\}$

--> (∞,0)

(1,1) 🗖

Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

Rank of a Transition

For a transition t in (0,1) $(\infty,0)$

$$\operatorname{span}_{\mathbb{Q}}\left(\left\{\mathfrak{m}\cdot \not \to +\mathfrak{n}\cdot \not \downarrow \mid \mathfrak{m} \geqslant 0, \mathfrak{n} > 0\right\}\right) = \mathbb{Q}^2$$

(1,1) 🗖

Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

Rank of a Transition

For a transition t in
$$(0,1)$$
 $(\infty,0)$

$$\dim\left(\operatorname{span}_{\mathbb{Q}}\left(\left\{\mathfrak{m}\cdot\not = n\cdot\not = n\cdot \not = n \ge 0, n > 0\right\}\right) = \mathbb{Q}^{2}\right) = 2$$

(1,1) 🗖

Decomposition Algorithm 00000 2019 Update

Complexity Upper Bounds

RANK OF A TRANSITION

For a transition t in
$$(0,1)$$
 $(0,1)$ $(0,1)$ $(\infty,0)$

$$dim\left(span_{\mathbb{Q}}\left(\left\{m \cdot \not = n \cdot \not = m \geqslant 0, n > 0\right\}\right) = \mathbb{Q}^{2}\right) = 2$$

here, $rank(t) = (1,0,0) \in \mathbb{N}^{d+1}$

(1,1) 🗖

(-1,-2)

Definition

$$rank(G) \stackrel{\text{\tiny def}}{=} \sum_{t \in G} rank(t) \qquad \in \mathbb{N}^{d+1}$$

(ordered lexicographically)

Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Rank of a VAS

For a transition t in (0,1) $(\infty,0)$

$$\begin{split} dim \Biggl(span_{\mathbb{Q}} \Bigl(\Bigl\{ m \cdot \not = n \cdot \not = n \cdot \not = m \geqslant 0, n > 0 \Bigr\} \Bigr) &= \mathbb{Q}^2 \Biggr) &= 2 \\ \end{split} \\ \text{here,} \qquad rank(t) &= (1,0,0) \qquad \in \mathbb{N}^{d+1} \end{split}$$

(1,1) 🗖

(-1,-2)

Definition

$$rank(G) \stackrel{\text{def}}{=} \sum_{t \in G} rank(t) \qquad \in \mathbb{N}^{d+1}$$

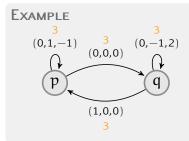
(added componentwise) (ordered lexicographically)

Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Rank of a VAS

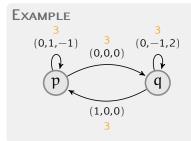


Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Rank of a VAS



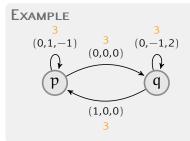
rank(G) = (4,0,0,0)

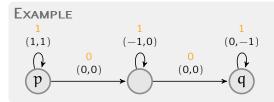
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Rank of a VAS



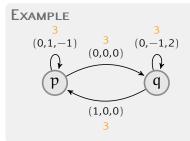


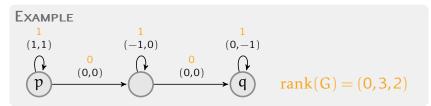
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Rank of a VAS





Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks

RECALL DECOMPOSITION STEPS:

- 🕨 no 🦨 🖉
- ► no 🖉:
 - ▶ bounded '∞': saturate
 - bounded transitions: unfold
- ► no 🛪 or no 💒 track value

Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks

RECALL DECOMPOSITION STEPS:

🕨 no 🦨 Ø

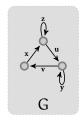
- ▶ bounded '∞': saturate
- bounded transitions: unfold
- ▶ no a or no g: track value

Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding



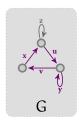
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



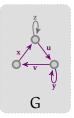
Decomposition Algorithm

2019 Update

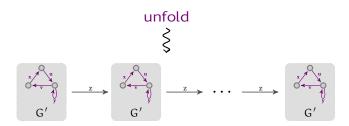
Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



 $\mathsf{T}^{\prime}\!\!:$ in an homogeneous solution



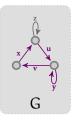
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



T': in an homogeneous solution

CLAIM If $T' \subsetneq T$, then rank $(G') < \operatorname{rank}(G)$

- let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $\mathbf{V}' \subseteq \mathbf{V}$, it suffices to show that $\mathbf{V}' = \mathbf{V}$ implies $\mathsf{T}' = \mathsf{T}$

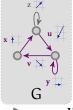
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



T': in an homogeneous solution

assume $\mathbf{V}' = \mathbf{V}$.

- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- the effect of the cycle is $\Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect ∆ e.g., ∆ = 1/2 (x + u + 4y + y)
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- ▶ choose $k \in \mathbb{N}$ such that $kc \ge 2$: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x, 2z, (kb+1)u, (kc-2)y, (kd+1)v] is also a hom. sol.

• thus T = T

Decomposition Algorithm

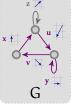
2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution





- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- the effect of the cycle is $\Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect Δ
 - e.g., $\Delta = \frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- choose k ∈ N such that kc ≥ 2: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x,2z,(kb+1)u,(kc-2)y,(kd+1)v] is also a hom. sol.
- thus T = T

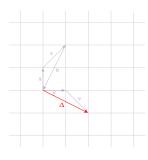
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution





- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect ∆ e.g., ∆ = ¹/₂(x + u + 4y + v)
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- ▶ choose $k \in \mathbb{N}$ such that $kc \ge 2$: [kax, kbu, kcy, kdv] still a hom. sol.
- $\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll} {\bf k} \end{tabular} t \end{tab$
- thus T = T

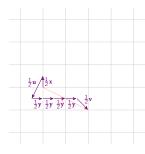
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- as $\mathbf{V} = \mathbf{V}'$, there exists a rational linear combination of cycles of T' with effect Δ e.g., $\Delta = \frac{1}{2} (\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- ▶ choose $k \in \mathbb{N}$ such that $kc \ge 2$: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x,2z,(kb+1)u,(kc-2)y,(kd+1)v] is also a hom. sol.
- thus T = T

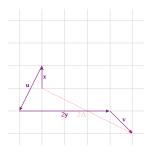
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T': \mbox{ not in any homogeneous solution}$



- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect ∆ e.g., ∆ = ½(x + u + 4y + v)
- ► then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- choose k ∈ N such that kc ≥ 2: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x,2z,(kb+1)u,(kc-2)y,(kd+1)v] is also a hom. sol.
- thus T = T

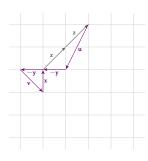
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution





- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect Δ e.g., Δ = ¹/₂(x + u + 4y + v)
- ▶ then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus $\mathbf{x} + 2\mathbf{z} + \mathbf{u} 2\mathbf{y} + \mathbf{v} = 0$
- choose k ∈ N such that kc ≥ 2: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x,2z,(kb+1)u,(kc-2)y,(kd+1)v] is also a hom. sol.
- thus T = T

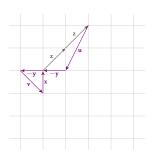
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T': \text{ not in any homogeneous solution}$



T': in an homogeneous solution e.g., [ax, bu, cy, dv]

- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect Δ e.g., Δ = ¹/₂(x + u + 4y + v)
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- choose k ∈ N such that kc ≥ 2: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x,2z,(kb+1)u,(kc-2)y,(kd+1)v] is also a hom. sol.
- thus T = T

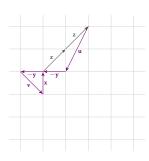
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



T': in an homogeneous solution e.g., [ax, bu, cy, dv]

assume $\mathbf{V}' = \mathbf{V}$.

- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- ▶ as V = V', there exists a rational linear combination of cycles of T' with effect Δ e.g., $\Delta = \frac{1}{2}(x + u + 4y + v)$
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- ▶ choose $k \in \mathbb{N}$ such that $kc \ge 2$: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x, 2z, (kb+1)u, (kc-2)y, (kd+1)v] is also a hom. sol.

• thus T = T

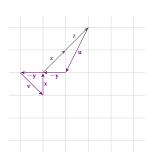
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T'$: not in any homogeneous solution



T': in an homogeneous solution e.g., [ax, bu, cy, dv]

- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- ▶ as V = V', there exists a rational linear combination of cycles of T' with effect Δ e.g., $\Delta = \frac{1}{2}(x + u + 4y + v)$
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- ▶ choose $k \in \mathbb{N}$ such that $kc \ge 2$: [kax, kbu, kcy, kdv] still a hom. sol.
- $\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll} \bullet & then \end{tabular} (ka+1)x, 2z, (kb+1)u, (kc-2)y, (kd+1)v] \\ & is also a hom. sol. \end{tabular}$

thus T = T

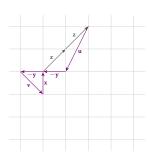
Decomposition Algorithm

2019 Update

Complexity Upper Bounds

Decreasing Ranks when Unfolding

 $T \setminus T': \text{ not in any homogeneous solution}$



T': in an homogeneous solution e.g., [ax, bu, cy, dv]

- assume $\mathbf{V}' = \mathbf{V}$.
- pick a cycle of G using every transition in T e.g., x + z + u + y + v
- $\blacktriangleright \quad \text{the effect of the cycle is } \Delta \in \mathbf{V}$
- as V = V', there exists a rational linear combination of cycles of T' with effect ∆ e.g., ∆ = ¹/₂(x + u + 4y + v)
- then $2\Delta = 2(\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{y} + \mathbf{v}) = 2\frac{1}{2}(\mathbf{x} + \mathbf{u} + 4\mathbf{y} + \mathbf{v})$
- thus x + 2z + u 2y + v = 0
- ▶ choose $k \in \mathbb{N}$ such that $kc \ge 2$: [kax, kbu, kcy, kdv] still a hom. sol.
- ▶ then [(ka+1)x,2z,(kb+1)u,(kc-2)y,(kd+1)v] is also a hom. sol.
- thus T = T'

ecomposition Algorithm

2019 Update

Complexity Upper Bounds

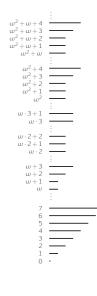
COMPLEXITY UPPER BOUNDS

9 18 17 16

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Ordinals

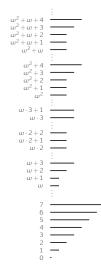


Cantor normal form for ordinals $\alpha < \varepsilon_0$:
$\begin{split} \alpha &= \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_k} \cdot c_k \\ \alpha &> \alpha_1 > \dots > \alpha_k \text{ in CNF }, 0 < c_1, \dots, c_k < \omega \end{split}$
norm of ordinals $\alpha < \varepsilon_0$: "maximal constant"
$N\alpha \stackrel{\text{\tiny def}}{=} \max_{1 \leq i \leq k} (\max(N\alpha_i, c_i))$
Example
$N7 = 7$ $N(\omega \cdot 3 + 1) = 3$
$N(\omega^2 + \omega) = 2 \qquad N(\omega^2 + \omega + 4) = 4$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences

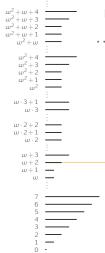


- always finite
- ... but can be of arbitrary length

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



- always finite
- ... but can be of arbitrary length

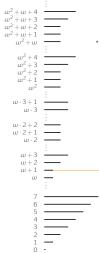
Example

 $\omega + 2$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



- always finite
- ... but can be of arbitrary length

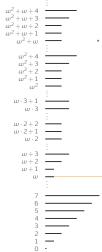
Example

 $\omega+2>\omega+1$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



- always finite
- ... but can be of arbitrary length

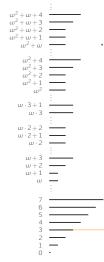
Example

 $\omega + 2 > \omega + 1 > \omega$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



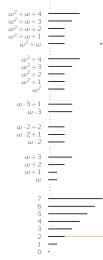
- always finite
- ... but can be of arbitrary length

$$\omega + 2 > \omega + 1 > \omega > 3$$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



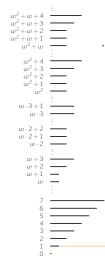
- always finite
- ... but can be of arbitrary length

$$\omega + 2 > \omega + 1 > \omega > 3 > 2$$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



- always finite
- ... but can be of arbitrary length

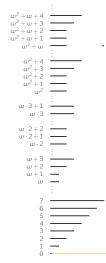
Example

 $\omega+2>\omega+1>\omega>3>2>1$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



- always finite
- ... but can be of arbitrary length

Example

 $\omega+2>\omega+1>\omega>3>2>1>0$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences

- always finite
- ... but can be of arbitrary length

Example

 $\omega + 2 > \omega + 1 > \omega > 3 > 2 > 1 > 0$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences

- always finite
- ... but can be of arbitrary length

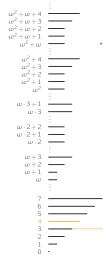
Example

 $\omega+2>\omega+1>\omega>4$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



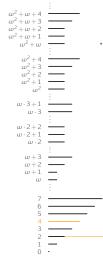
- always finite
- ... but can be of arbitrary length

```
\omega+2>\omega+1>\omega>4>3
```

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



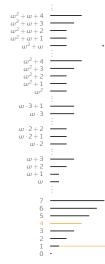
- always finite
- ... but can be of arbitrary length

```
\omega+2>\omega+1>\omega>4>3>2
```

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



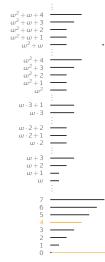
- always finite
- ... but can be of arbitrary length

```
\omega+2>\omega+1>\omega>4>3>2>1
```

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



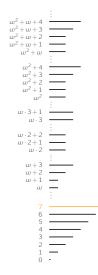
- always finite
- ... but can be of arbitrary length

```
\omega+2>\omega+1>\omega>4>3>2>1>0
```

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



- always finite
- ... but can be of arbitrary length

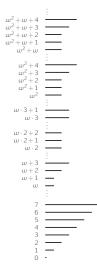
Example

 $\omega + 2 > \omega + 1 > \omega > 7 > 6 > 5 > 4 > 3 > 2 > 1 > 0$

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



• $\alpha_0 > \alpha_1 > \dots$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

Proposition

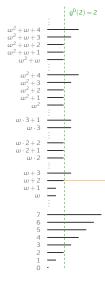
Descending sequences of ordinals

in $\alpha < \varepsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{\mathfrak{g},\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



$\alpha_0 > \alpha_1 > \ldots$ is controlled by $g{:}\mathbb{N} \to \mathbb{N}$
(monotone inflationary) and $n_0 \in \mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2$

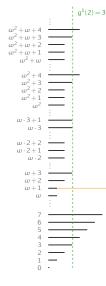
PROPOSITION

Descending sequences of ordinals in $\alpha < \varepsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{\mathfrak{g},\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



•	$\alpha_0 > \alpha_1 > \ldots$ is controlled by $g{:}\mathbb{N} \to \mathbb{N}$
	(monotone inflationary) and $\mathfrak{n}_0 \in \mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1$

Proposition

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{q,\alpha}(n_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences

 $q^2(2) = 4$ $\omega^{2} + \omega + 4$ $\omega^2 + \omega + 3$ $\omega^2 + \omega + 2$ $\omega^{2} + \omega + 1$ $\omega^2 + \omega$ $\omega^{2} + 4$ $\omega \cdot 3 + 1$ ω·3 $\omega \cdot 2 + 2$ $\omega \cdot 2 + 1$

 $\begin{array}{l} \alpha_0 > \alpha_1 > \dots \text{ is controlled by } g : \mathbb{N} \to \mathbb{N} \\ (\text{monotone inflationary}) \text{ and } n_0 \in \mathbb{N} \text{ if} \end{array}$

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega$

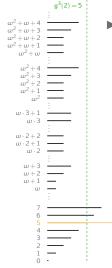
Proposition

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{g,\alpha}(n_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



• $\alpha_0 > \alpha_1 > \dots$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5$

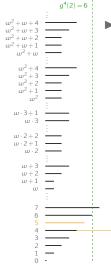
Proposition

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{q,\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



$\alpha_0 > \alpha_1 > \ldots$ is controlled by $g{:}\mathbb{N} \to \mathbb{N}$
(monotone inflationary) and $\mathfrak{n}_0 \in \mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4$

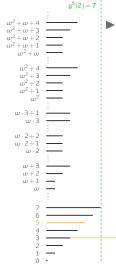
PROPOSITION

Descending sequences of ordinals in $\alpha < \varepsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{\mathfrak{g},\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



 $\alpha_0 > \alpha_1 > \dots$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3$

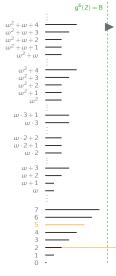
PROPOSITION

Descending sequences of ordinals in $\alpha < \varepsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{\mathfrak{g},\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



 $\begin{array}{l} \alpha_0>\alpha_1>\dots \text{ is controlled by }g{:}\,\mathbb{N}\to\mathbb{N}\\ (\text{monotone inflationary}) \text{ and }n_0\in\mathbb{N} \text{ if} \end{array}$

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2$

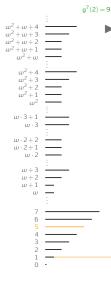
PROPOSITION

Descending sequences of ordinals in $\alpha < \varepsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{\mathfrak{g},\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



 $\begin{array}{l} \alpha_0 > \alpha_1 > \dots \text{ is controlled by } g : \mathbb{N} \to \mathbb{N} \\ (\text{monotone inflationary}) \text{ and } n_0 \in \mathbb{N} \text{ if} \end{array}$

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2 > 3$

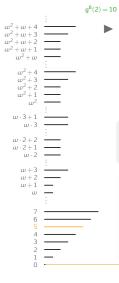
Proposition

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{q,\alpha}(n_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



 $lpha_0>lpha_1>\dots$ is controlled by $g:\mathbb{N} o\mathbb{N}$ (monotone inflationary) and $n_0\in\mathbb{N}$ if

 $\forall i. N \alpha_i \leq g^i(n_0)$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2 > 1 > 0$

PROPOSITION

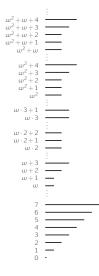
Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have

maximal length, noted $L_{g,\alpha}(\mathfrak{n}_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descending Ordinal Sequences



• $\alpha_0 > \alpha_1 > \dots$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

$$\forall i. N \alpha_i \leq g^i(n_0)$$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2 > 1 > 0$

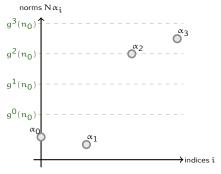
PROPOSITION

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{q,\alpha}(n_0)$.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

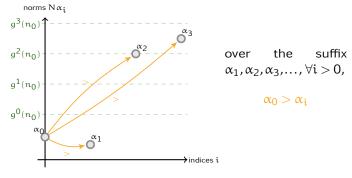
Descent Equation



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

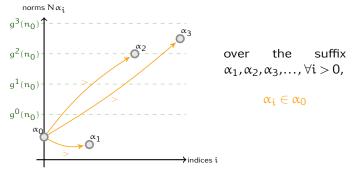
Descent Equation



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

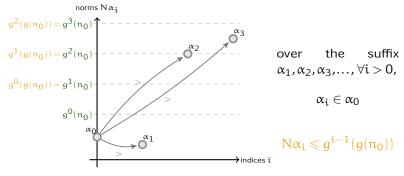
Descent Equation



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

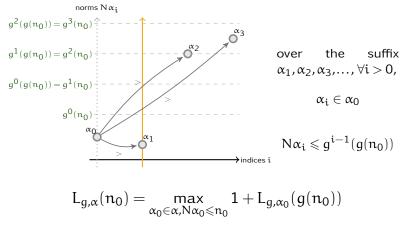
Descent Equation



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descent Equation



Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Descent Equation

$$L_{g,\alpha}(n_0) = \max_{\alpha_0 \in \alpha, N \alpha_0 \leqslant n_0} 1 + L_{g,\alpha_0}(g(n_0))$$

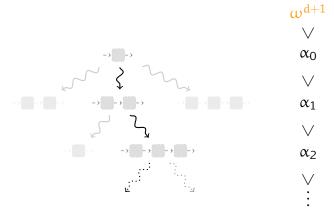
Consequence of (S. '14, '16)

For g elementary, $L_{g,\omega^{d+1}}(n_0)\leqslant F_{d+4}(e(n_0))$ for some elementary function e.

Decomposition Algorithm 00000 2019 Update 0000 Complexity Upper Bounds

The Length of Decomposition Branches

[Leroux & S. '19]

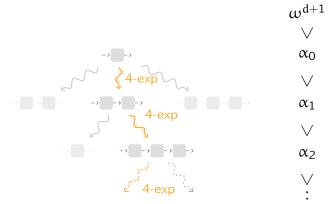


COROLLARY The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

Decomposition Algorithm 00000 2019 Update 0000 Complexity Upper Bounds

The Length of Decomposition Branches

[Leroux & S. '19]

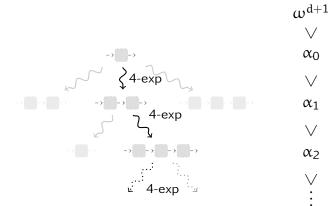


COROLLARY The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

Decomposition Algorithm 00000 2019 Update 0000 Complexity Upper Bounds

The Length of Decomposition Branches

[Leroux & S. '19]



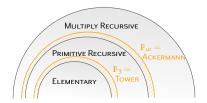
COROLLARY The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

CURRENT UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overline{F_0 \circ \cdots \circ F_0}(x) = 2x+1 \\ F_2(x) &= \overline{F_1 \circ \cdots \circ F_1}(x) \approx 2^x \\ F_3(x) &= \overline{F_2 \circ \cdots \circ F_2}(x) \approx tower(x) \\ &\vdots \\ F_{00}(x) &= F_{x+1}(x) \qquad \approx ackermann(x) \end{split}$$



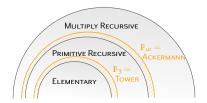
Upper Bound Theorem ([Leroux & S. '19]) VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

CURRENT UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overline{F_0 \circ \cdots \circ F_0}(x) = 2x+1 \\ F_2(x) &= \overline{F_1 \circ \cdots \circ F_1}(x) \approx 2^x \\ F_3(x) &= \overline{F_2 \circ \cdots \circ F_2}(x) \approx tower(x) \\ &\vdots \\ F_{00}(x) &= F_{x+1}(x) \qquad \approx ackermann(x) \end{split}$$



UPPER BOUND THEOREM ([LEROUX & S. '19]) VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

THEOREM ([LEROUX '20]) VAS Reachability reduces to bounded VAS Reachability

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

A Related Problem

labelled VAS $\ transitions\ carry\ labels\ from\ some\ alphabet$

 $L(\mathcal{V}, source, target)$ the language of labels in runs from source to target

 ${\downarrow}L~$ the set of scattered subwords of the words in the language L~

Example (scattered subword ordering) aba ≤_{*} baaacabbab

2019 Update 0000 Complexity Upper Bounds

A Related Problem

labelled VAS $\ transitions\ carry\ labels\ from\ some\ alphabet$

$L(\mathcal{V}, source, target)$ the language of labels in runs from source to target

 ${\downarrow}L~$ the set of scattered subwords of the words in the language L~

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq \downarrow L(\mathcal{V}', source', target')$?

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

A Related Problem

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq \downarrow L(\mathcal{V}', source', target')$?

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS \mathcal{V} and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(\mathcal{V}, source, target)$ in polynomial time.

Corollary The Downwards Language Inclusion is in Ackermann.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

A Related Problem

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq \downarrow L(\mathcal{V}', source', target')$?

Тнеокем (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS \mathcal{V} and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(\mathcal{V}, source, target)$ in polynomial time.

Corollary The Downwards Language Inclusion is in Ackermann.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

A Related Problem

Downwards Language Inclusion Problem input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq \downarrow L(\mathcal{V}', source', target')$?

Corollary The Downwards Language Inclusion is in Ackermann.

Тнеокем (Zetzsche'16)

The Downwards Language Inclusion is Ackermann-hard.

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Perspectives

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- decomposition algorithm: requires $F_{\omega} = ACKERMANN$ time, because downward language inclusion is F_{ω} -hard [Zetzsche'16]

2. reachability in VAS extensions?

decidable in VAS with hierarchical zero tests [Reinhardt'08]

what about

- branching VAS
- unordered data Petri nets
- pushdown VAS

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Perspectives

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- decomposition algorithm: requires F_ω = ACKERMANN time, because downward language inclusion is F_ω-hard [Zetzsche'16]

2. reachability in VAS extensions?

decidable in VAS with hierarchical zero tests [Reinhardt'08]

what about

- branching VAS
- unordered data Petri nets
- pushdown VAS

Decomposition Algorithm

2019 Update 0000 Complexity Upper Bounds

Perspectives

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- decomposition algorithm: requires F_ω = ACKERMANN time, because downward language inclusion is F_ω-hard [Zetzsche'16]

2. reachability in VAS extensions?

- decidable in VAS with hierarchical zero tests [Reinhardt'08]
- what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS