Analytic Combinatorics 2/2

Marni Mishna

Department of Mathematics Simon Fraser University Burnaby Canada

EJCIM • "Bordeaux", France

Motivating question #1

In a given regular language over $\{0, 1\}$, what is the proportion of words of length *n* that have the same number of 0s and 1s? (for *n* large) What about an alphabet of size *k*? What about for a context-free language?

Motivating question #2

Which proportion of sequences of *n* "king" chess moves on \mathbb{Z}^2 start and end at the origin, and stay in \mathbb{N}^2 ? (3-D version? arbitrary dimension? other possible moves? regions?)

A Course on Analytic Combinatorics

Objective

Develop tools for analysing the large scale behaviour of combinatorial classes in a **systematic** manner.

Strategy

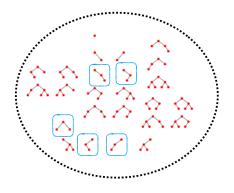
Examine singularities of multivariable combinatorial generating functions and develop a geometric understanding of its singular structure and then deduce the asymptotic expressions for counting sequences.

Organization

- I. Combinatorial Framework
 - Combinatorial Calculus
 - Parameters and Extracted Classes
- II. Introductory Singularity Analysis & Asymptotic Expressions
 - Univariate case
 - Multivariate case

Recall the Combinatorial Framework

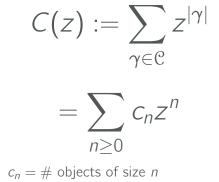
Combinatorial Classes



tree $\mapsto z^{\# nodes}$

 $C(z) = z + 2z^2 + 5z^3 + 14z^4 + 42z^5$

A **class** is a set C, and size $|\cdot|$. The number of elements of a given size is finite.



C(z) is the ordinary generating function (OGF) for \mathcal{C}

Combinatorial Calculus

	C	Notes	$C(z) = \sum z^{ \gamma }$
Epsilon Atom	$\{\epsilon\}$ $\{\circ\}$	$\begin{aligned} \epsilon &= 0\\ \circ &= 1 \end{aligned}$	1 z
	$ \begin{array}{c} \mathcal{A} + \mathcal{B} \\ \mathcal{A} \times \mathcal{B} \\ \mathcal{A}^k \end{array} $	$ \begin{array}{l} \gamma \times \epsilon_{\mathcal{A}}, \gamma \times \epsilon_{\mathcal{B}} \\ (\alpha, \beta), \alpha \in \mathcal{A}, \beta \in \mathcal{B} \\ (\alpha_1, \ldots, \alpha_k), \alpha_i \in \mathcal{A} \\ \epsilon + \mathcal{A} + \mathcal{A}^2 + \mathcal{A}^3 + \ldots \end{array} $	A(z) + B(z) $A(z)B(z)$
$\{\bullet\}$ $\{\Box\}$ \mathcal{B}	≡ □ +	$\downarrow \qquad \downarrow \\ 1 \cdot B(z)^2$	$B(z) = \frac{1-\sqrt{1-4z}}{2z}$

Combinatorial Parameters

A **parameter** of a class is a map $\chi : \mathfrak{C} \to \mathbb{Z}$ e.g. # 0 in a binary word ; end position (i, j) of a lattice walk

$$C(u,z) := \sum_{\gamma \in \mathcal{C}} u^{\chi(\gamma)} x^{|\gamma|} = \sum_{n \ge 0} \left(\sum_{k \in \mathbb{Z}} c_{k,n} u^k \right) z^n.$$

 $c_{k,n} = \#$ objects of size *n* with parameter value *k*. $C(u, z) \in \mathbb{N}[u, u^{-1}][[z]]$ Power series with Laurent polynomial coefficients

Example

$$\chi(w) = |w|_{\circ} = \# \text{ os a word in } \{\circ, \bullet\}^*: \ \chi(\circ \bullet \circ \circ) = 2$$

$$C(u, z) = 1 + (u+1)z + (u^2 + 2u + 1)z^2 + (u^3 + 3u^2 + 3u + 1)z^3 + \dots$$

$$C(u, z) = \left(\frac{1}{1 - (z + uz)}\right).$$
(1)

Treat it as a 2-dimensional parameter: $w \mapsto (\chi(w), |w|)$.

Balanced word classes

 $\mathcal{L} = \{\text{binary expansions of } n \mid n \equiv 0 \mod 3.\} \quad \text{Size} = \text{length of string}$ $\mathcal{L} = \{\epsilon, \overset{0}{0}, 00, 000, \dots, \overset{3}{11}, 011, 0011, \dots, \overset{6}{110}, 0110, 00110, \dots, \overset{9}{1001}, 01001, \overset{12}{1100}, 01100, \dots, \overset{15}{1111}, 01111, \dots\}$

S-regular specification: $\mathcal{L} = (0 + (1(01^*0)^*1))^*$ Parameter: $\chi(w) = (|w|_0, |w|_1, |w|) = (\#0s \text{ in } w, \#1s \text{ in } w, |w|)$ Balanced sub-class:

more interesting: $\mathcal{L} \subseteq \{a_1, a_2, \dots, a_d\}^*$ with $\chi_i(w) = \#$ of a_i in w.

Excursions

 $S = \{\uparrow, \downarrow, \leftarrow, \rightarrow\} = \clubsuit$ is a set of steps. Consider walks starting at (0, 0) taking steps from S. Unrestricted walks are S-regular:

$$\{\uparrow,\downarrow,\leftarrow,\rightarrow\}^*$$

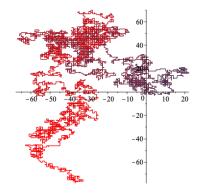
Define parameter $\chi(w)$:= (endpoint of w, # of steps).

Endpoint is an inherited parameter

$$\sum walk_{\mathbb{Z}^2}^{\ddagger}((0,0) \xrightarrow{n} (k,\ell)) x^k y^\ell t^n = \frac{1}{1 - t(x + 1/x + y + 1/y)}$$

Excursions are a derived class

$$\mathcal{E} = \{ w \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}^* \mid \chi(w) = (0, 0, n) \}$$



Diagonals

The central diagonal maps series expansions to series expansions. e.g.

$$\Delta: K[[z_1, z_1^{-1}, \ldots, z_d, z_d^{-1}][[t]] \to K[[t]].$$

defined as:

$$\Delta F(\mathbf{z},t) = \Delta \sum_{k\geq 0} \sum_{n\in\mathbb{Z}^d} f(n_1, n_2, \dots, n_d, k) \, \mathbf{z}^n t^k := \sum_{n\geq 0} f(n, n, \dots, n) \, t^n.$$
(2)

$$\Delta(z_1^2 z_2 t + 3\mathbf{z}_1 \mathbf{z}_2 \mathbf{t} + 7z_1 z_2 t^2 + 5\mathbf{z}_1^2 \mathbf{z}_2^2 \mathbf{t}^2) = 3t + 5t^2$$

Example: Multinomials

$$\Delta \frac{1}{1-x-y} = \sum_{n \ge 0} \binom{2n}{n, n} y^n.$$
$$\Delta^{(r,s)} \frac{1}{1-x-y} = \sum_{n \ge 0} \binom{rn+sn}{rn, sn} y^n.$$
$$\Delta^r \frac{1}{1-(z_1+\cdots+z_d)} = \sum_{n \ge 0} \binom{n(r_1+\cdots+r_d)}{nr_1, \dots, nr_d} z_d^n.$$

Balanced word classes

$$\mathcal{L} \subseteq \{0, 1\}^2$$
Parameter $\chi(w) = (|w|_0, |w|_1, n) = (\#0s \text{ in } w, \#1s \text{ in } w)$

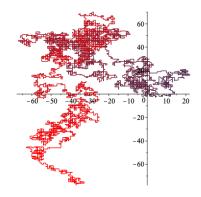
$$\mathcal{L}_{=} := \{w \in \mathcal{L} \mid \#0s = \#1s\}$$

$$\mathcal{L}_{=}(y) = \Delta L(x, y)$$

Excursions

Excursions: start and end at (0, 0) with steps from $S = \Phi$:

$$\mathcal{E} = \{w \in \{\uparrow,\downarrow,\leftarrow,
ightarrow\}^* \mid \chi(w) = (0,0)\}$$

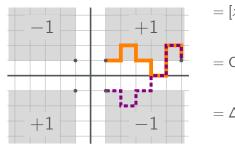


OGF for excursions:

$$\sum walk_{\mathbb{Z}^2}^{\bigoplus}((0,0) \xrightarrow{n} (0,0)) t^n = [x^0 y^0] \frac{1}{1 - t(x + 1/x + y + 1/y)}$$
$$= \Delta \frac{1}{1 - txy(1/x + x + 1/y + y))}$$

Walks confined to a quadrant - Reflection Principle

$$\sum_{n\geq 0} \operatorname{walk}_{\mathbb{N}^2}^{\textcircled{1}}((0,0) \xrightarrow{n} (0,0)) t^n$$



$$= [x^{1}y^{1}]\frac{xy - x/y + (xy)^{-1} + y/x}{(1 - t(x + 1/x + y + 1/y))}$$
$$= CT \frac{(x - \frac{1}{x})(y - \frac{1}{y})}{xy(1 - t(x + 1/x + y + 1/y))}$$
$$= \Delta \frac{xy(x - \frac{1}{x})(y - \frac{1}{y})}{1 - txy(x + 1/x + y + 1/y)}$$
$$= \Delta \frac{(x^{2} - 1)(y^{2} - 1)}{1 - t(x^{2}y + y + xy^{2} + x)}.$$

II. Singularities and Critical Points

Objective

- Systematic methods to determine asymptotic estimates for the number of objects of size *n* in combinatorial class C.
- Find simple $\Phi(n)$ with $\lim_{n\to\infty} \Phi(n)/c_n = 1$ eg. $\Phi(n) = \gamma k^n n^{-r}$.

Today

We focus on diagonals of multivariable rationals

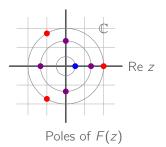
$$\Delta \frac{G(\mathbf{z},t)}{H(\mathbf{z},t)} = \Delta \sum_{k \ge 0} \sum_{\mathbf{n} \in \mathbb{Z}^d} f(\mathbf{n},k) \, \mathbf{z}^{\mathbf{n}} t^k := \sum_{n \ge 0} f(n,n,\ldots,n) \, t^n.$$

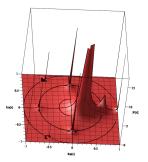
Analytic Strategy

- Understand the singularity structure of its OGF C(t)
- Relate the singularities of $\frac{G(z,t)}{H(z,t)}$ and $C(t) = \Delta \frac{G(z,t)}{H(z,t)}$.
- Today: Look at the geometry of the variety of points annihilating *H*.

Univariate Singularity

$$F(z) = \frac{1}{(1-z^3)(1-4z)^2(1-5z^4)} = \sum f_n z^n$$
$$= 1 + 8z + 54 z^2 + 304 z^3 + 1599 z^4 + 7928 z^5 + O(z^6)$$
$$f_n \sim \text{const}(1/4)^{-n} n^{-1}$$



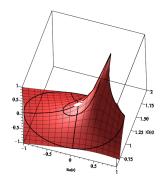


Value of |F(z)|

Branch Point Singularity at 1/4

$$C(z) = \frac{1 - \sqrt{1 - 4z}}{2z} = 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + 132z^6 + O(z^7)$$

$$c_n \sim \text{const}(1/4)^{-n} n^{-3/2}$$



 $\operatorname{Im} C(z)$

|C(z)|

Exponential growth and the radius of convergence

$$F(z) = \sum_{n \ge 0} f_n z^n \in \mathbb{R}_{>0}[[z]]$$

 \implies there is a positive real valued singular point $\rho \in \mathbb{R}_{>0}$ on the circle of convergence. (Pringshheim)

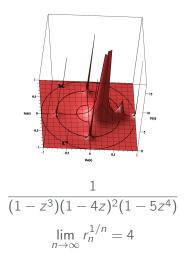
Exponential growth

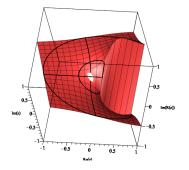
 $\mu := \limsup_{n \to \infty} f_n^{1/n}$ " $f_n \sim \kappa \mu^n n^{\alpha}$ "

 $ROC(F(z)) = \rho \implies \mu = \rho^{-1}$

Convergence and the Exponential Growth

The radius of convergence $F(z) = \rho$ \implies exponential growth of $f_n = \rho^{-1}$.





$$\frac{1 - \sqrt{1 - 4z}}{2z}$$
$$\lim_{n \to \infty} c_n^{1/n} = 4$$

The first principle of coefficient asymptotics

The **location** of singularities of an analytic function determines the **exponential order** of growth of its Taylor coefficients.

We connect the boundary of convergence and exponential growth.

Preview: An analogy

Here is a rough idea of what the multivariable case looks like.

Univariate Rationals

$$F(z) = \frac{G(z)}{H(z)} = \sum f_n z^n$$
$$f_n \sim C \mu^n n^{\alpha}$$

dominant singularity: $\rho \in \mathbb{C}$ on circle of convergence satisfying $H(\rho) = 0$

$$\mu = |\rho|^{-1}$$

Multivariable Rationals

$$\Delta \frac{G(z_1,\ldots,z_d)}{H(z_1,\ldots,z_d)} = \sum f_{nn\ldots n} z_d^n$$

$$f_{nn...n} \sim C \mu^n n^{\alpha}$$

minimal critical point: (ρ_1, \ldots, ρ_d) on the boundary of convergence satisfying $H(\rho_1, \ldots, \rho_d) = 0$ + other equations.

$$\mu = |\rho_1 \dots \rho_d|^{-1}$$

Multivariable Series

Convergence of multivariable series

• View the series as an iterated sum.

$$\sum_{n_d} \left(\dots \left(\sum_{n_1} a(n_1, \dots, n_d) z_1^{n_1} \right) \dots \right) z_d^{n_d}$$

- The domain of convergence, denoted D ⊆ C^d, is the interior of the set of points where the series converges absolutely.
- The polydisk of a point *z* is the domain

$$D(\mathbf{z}) = \{\mathbf{z}' \in \mathbb{C}^d : |z_i'| \le |z_i|, 1 \le i \le d\}.$$

• The torus associated to a point is

$$\mathcal{T}(\mathbf{z}) = \{\mathbf{z}' \in \mathbb{C}^d : |z_i'| = |z_i|, 1 \le i \le d\}.$$

• A domain of convergence is multicircular.

$$\mathbf{z} = (z_1, \ldots, z_d) \in \mathcal{D} \implies T(\mathbf{z}) \subseteq \mathcal{D} \implies (\omega_1 z_1, \ldots, \omega_d z_d) \in \mathcal{D}, \quad |\omega_k| = 1$$

What is a singularity of G/H?

The set of singularities of G(z)/H(z) is the algebraic variety

 $\mathcal{V} := \{ \mathbf{z} : H(\mathbf{z}) = 0 \}.$

minimal points (working definition)

The set of minimal points of a series expansion of F is the set of singular points on the boundary of convergence.

 $\mathcal{V}\cap\partial\mathcal{D}$

A point z is strictly minimal if $\mathcal{V} \cap D(z) = \{z\}$

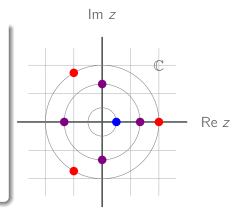
Example: 1D

Definitions

The set of minimal points of a series development of F is the set of singular points on the boundary of convergence.

 $\mathcal{V}\cap\partial\mathcal{D}$

A point **z** is strictly minimal if $\mathcal{V} \cap D(\mathbf{z}) = \{\mathbf{z}\}$

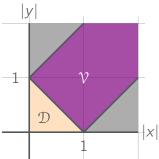


$$H(z) = (1 - z^3)(1 - 4z)^2(1 - 5z^4)$$

 $\partial \mathcal{D} = \{z : |z| = 1/4\}, \ \mathcal{V} = \{1/4, 1, w, w^2, (\frac{1}{5})^{1/4}\}$ minimal point: $\mathcal{V} \cap \mathcal{D} = \{1/4\}$, strictly minimal. Example: $F(x, y) = \frac{1}{1-x-y}$

Taylor expansion: $\sum_{k,\ell} \binom{k+\ell}{k} x^k y^\ell$

Convergence at (x, y) $\implies \text{ convergence at } (|x|, |y|) \qquad |y|$ $F(|x|, |y|) = \frac{1}{1 - |x| - |y|} \implies |x| + |y| < 1$ $\partial \mathcal{D} = \{(x, y) \in \mathbb{C}^2 \mid |x| + |y| = 1\}$ $\mathcal{V} = \{(z, 1 - z) \mid z \in \mathbb{C}\}$



Minimal points $\mathcal{V} \cap \partial \mathcal{D}$

 $\{(z, 1-z) \mid |z|+|1-z|=1\} = \{(x, 1-x) \mid x \in \mathbb{R}_{>0}\}$

All strictly minimal.

A first formula for exponential growth for diagonal coefficients

Convergence and exponential growth

Given series $\sum a(\mathbf{n}) \mathbf{z}^{\mathbf{n}}$ and $\mathbf{z} \in \mathcal{D}$,

 $\sum_{\mathbf{n}\in\mathbb{N}^d}a(\mathbf{n})|z_1|^{n_1}|z_2|^{n_2}\ldots|z_d|^{n_d} \text{ is convergent (absolute conv)}.$

 $\implies \sum_{n \in \mathbb{N}} a(n, n, \dots, n) |z_1|^n |z_2|^n \dots |z_d|^n \text{ is convergent (subseries).}$

$$=\sum_{n}a(n,n,\ldots,n)|z_1z_2\ldots z_d|^n$$

 $\implies t = |z_1 z_2 \dots z_d|$ is within the radius of convergence of $\Delta F(\mathbf{z})$.

$$\mu \leq \limsup_{n \to \infty} |a(n, n, \dots, n)|^{1/n} \leq |z_1 z_2 \dots z_d|^{-1} \quad \text{with } \forall \mathbf{z} \in \overline{\mathcal{D}}$$

$$\leq \inf_{(z_1,\ldots,z_d)\in\overline{\mathcal{D}}} |z_1z_2\ldots z_d|^{-1}.$$

Thm: Under conditions of non-triviality, the infimum is reached at a minimal point:

$$\mu = \inf_{z \in \partial \mathcal{D} \cap \mathcal{V}} |z_1 \dots z_d|^{-1}.$$
 (3)

Example: Binomials $F(x, y) = (1 - x - y)^{-1}$

Minimal points: $\partial \mathcal{D} \cap \mathcal{V} = \{(x, 1-x) \in \mathbb{R}^2 : 0 < x < 1\}.$

$$\mu = \limsup_{n \to \infty} a(n, n)^{1/n} = \inf_{(x, y) \in \partial \mathcal{D} \cap \mathcal{V}} |xy|^{-1} = \inf_{x \in \mathbb{R}: 0 \le x \le 1} (x(1-x))^{-1} = 4.$$

We can consider non-central diagonals.

$$\limsup_{n \to \infty} a_{rn\,sn}^{1/n} = \inf_{(x,y) \in \partial \mathcal{D}} |x^r y^s|^{-1} = \inf_{x \in \mathbb{R}} (x^r (1-x)^s)^{-1}.$$

This is minimized at $x = \frac{r}{r+s}$. The exponential growth:

$$\mu = \left(\left(\frac{r}{r+s} \right)^r \left(\frac{s}{r+s} \right)^s \right)^{-1}$$

We got lucky here – we could easily write y in terms of x. What to do in general?

Computing critical points

The height function h

Astuce

We convert the multiplicative minimization to a linear minimization using logarithms.

To minimize $|z_1 \dots z_d|^{-1}$, minimize: $-\log |z_1 \dots z_d| = \underbrace{-\log |z_1| - \dots - \log |z_d|}_{\text{linear in } \log |z_i|}$ Define a function $h: \mathcal{V}^* \to \mathbb{R}$: $v^* = v \setminus \{z: z_1 \dots z_d \neq 0\}$

$$(z_1,\ldots,z_d)\mapsto -\log |z_1|-\cdots-\log |z_d|.$$

The map *h* is smooth \implies minimized at its critical points. When r = (1, ..., 1), the critical points are solutions to the critical point equations:

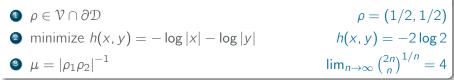
$$H(\mathbf{z}) = 0$$
, $z_1 \frac{\partial H(\mathbf{z})}{\partial z_1} = z_j \frac{\partial H(\mathbf{z})}{\partial z_j}$, $2 \le j \le d$.

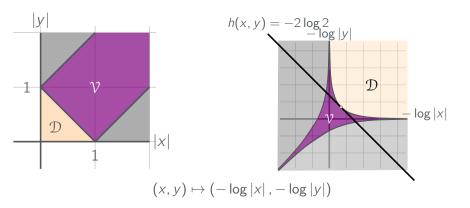
Critical points are potential locations of minimizers of $|z_1 \dots z_d|^{-1}$. In the most straightforward cases it suffices to compare the values of this product and select the critical point that is the global minimizer.

- A critical point is strictly minimal if it is on the boundary of convergence of the series.
- In these generating functions the asymptotics is driven by a finite number of isolated minimal points. Simplest case.

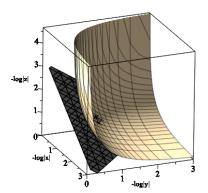
Visualize Critical Points

Critical points of $(1 - x - y)^{-1}$ for r = (1, 1)





Trinomial $(1 - x - y - z)^{-1}$ Critical points $\rho \in \mathcal{V} \cap \partial \mathcal{D}$ $\rho = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ minimize $h(x, y, z) = -\log |x| - \log |y| - \log |z|$ $h(x, y, z) = 3 \log 3$ $\mu = |\rho_1 \rho_2 \rho_3|^{-1}$ $\lim_{n \to \infty} (\frac{3n}{n, n, n})^{1/n} = 27$



Non-central diagonals

If we want a non-central diagonal, we want to minimize

$$|z_1^{r_1}\ldots z_d^{r_d}|^{-1}$$
 in $\partial \mathcal{D}\cap \mathcal{V}$.

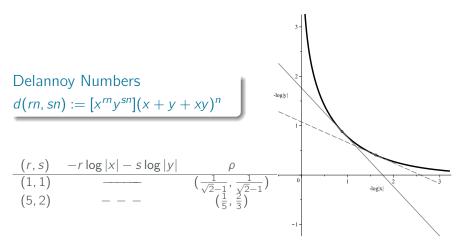
Instead take height function here is

$$(z_1,\ldots,z_d)\mapsto -r_1\log|z_1|-\cdots-r_d\log|z_d|.$$

The equations change. For example, in 2D, diagonal (r, s), solve the equations:

$$H(x, y) = 0, \quad s x \frac{\partial H(x, y)}{\partial x} = r y \frac{\partial H(x, y)}{\partial y}.$$

Critical point depends on the diagonal ray



Summary: To Find Critical Points

Given:
$$G(x, y)/H(x, y) = \sum f_{k,\ell} x^j y^k$$
, irreducible H
 $(r, s) \in \mathbb{R}^2_{>0}$
Determine: $\mu = \limsup_{n \to \infty} f_{m,sn}^{1/n}$, critical points ρ

Find solutions {ρ} to the (r, s)-critical point equations.
 Hint: Find Gröbner basis of

[H, s*x*diff(H, x)-r*y*diff(H,y)]

- Ensure $T(\rho) \subset \partial \mathcal{D}$
- Set $\mu = \min |\rho_1 \dots \rho_d|^{-1}$ among those solutions with no 0 coordinate.
- We use the set of such ρ to find the sub-exponential growth (tomorrow)
- Nontriviality requirement: ρ to be smooth as a function of (r, s) near where you want it.

Balanced Binary Words

Let $\mathcal{L} =$ Binary words over {0, 1} with no run of 1s of length 3.

$$\mathcal{L} = (\epsilon + 1 + 11) \cdot (0 \cdot (\epsilon + 1 + 11))^*$$

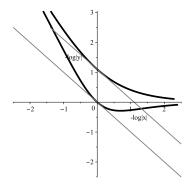
Parameter: $\chi(w) = (|w|_0, |w|_1)$

$$\mathcal{L}_{=} = \{ w \in \mathcal{L} \mid \chi(w) = (n, n) \}$$
$$L_{=}(y) = \Delta \frac{1 + x + x^{2}}{1 - y(1 + x + x^{2})}$$

- GB of Critical point equations: $[x^2 1, x + 3y 2]$
- two solutions: (1,1/3) (-1,1)
- $\mu = \min |\rho_1 \dots \rho_d|^{-1} (1, 1/3) \mapsto 3 (-1, 1) \mapsto 1$
- BUT (1, 1) ∈ T(-1, 1) ⇒ (-1, 1) is not a minimal point because (1, 1) outside of domain of convergence.

$$[y^n]L_=(y) \to \kappa 3^n n^{\alpha}$$

Visualize the boundary



Simple Excursions

Let \mathcal{E} be the set of simple excursions in the entire plane, that is walks that start and end at the origin, taking unit steps $\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$

$$e(n) = [x^0y^0](x + 1/x + y + 1/y)^n$$

We can deduce:

$$E(z) = \Delta \frac{1}{1 - zxy\left(x + \frac{1}{x} + y + \frac{1}{x}\right)}$$

Any critical point $\rho = (x, y, z)$ will have $z = \frac{1}{xy(x+1/x+y+1/y)}$ from H = 0. Critical points: (1, 1, 1/4), (-1, -1, -1/4)

$$e(2n)^{1/2n} = \inf_{\rho \in \partial \mathcal{D} \cap \mathcal{V}} |xyz|^{-1} = \inf_{0 \le x, y \le 1} |x+1/x+y+1/y| = 4^2$$

Excursions for any finite step set

This phenomena is general. Let S be any weighted finite 2D step set

$$S(x, y) = \sum_{(j,k) \in \mathbb{S}} w(j, k) x^{j} y^{k}$$

$$e(n) = [x^0 y^0] S(x, y)^n$$

We can deduce:

$$E(z) = \Delta \frac{1}{1 - zxyS(1/x, 1/y)}$$

Any critical point $\rho = (x, y, z)$ will have $z = \frac{1}{xyS(1/x, 1/y)}$ from H = 0.

$$\limsup_{n \to \infty} e(n)^{\frac{1}{n}} = \inf_{\rho \in \partial \mathcal{D} \cap \mathcal{V}} |xyz|^{-1} = \inf_{\rho \in \partial \mathcal{D}} |S(1/x, 1/y)|$$

The minimum is found using the critical point eqn.

Suppose H factors nontrivially into squarefree factors:

$$H = H_1 \ldots H_k$$

- CASE A: $H_j(\rho) = 0 \implies H_k(\rho) \neq 0$ for $j \neq k$: OK.
- CASE B: Must decompose V into strata, and find critical points for each stratum independently. **Important to keep track of the co-dimension of the stratum for later.**

Walks in the quarter plane that end anywhere

Let $S = \{ \swarrow, \rightarrow, \downarrow \}$. T = walks start at (0, 0) end anywhere. Using a reflection principle argument:

$$T(z) = \Delta \frac{\left(1 - \frac{y^2}{x} + \frac{y^3}{y^2} - \frac{x^2y^2}{x^3} - \frac{x^2}{y}\right)}{\left(1 - \frac{zxy(1}{x} + \frac{x}{y} + \frac{y}{y})\right)\left(1 - \frac{x}{y}\right)}$$
(4)

Critical points

We divide \mathcal{V}_H into strata and we determine critical points from each of them.

Image of \mathcal{V} under $(x, y, z) \mapsto (|x|, |y|, |z|)$

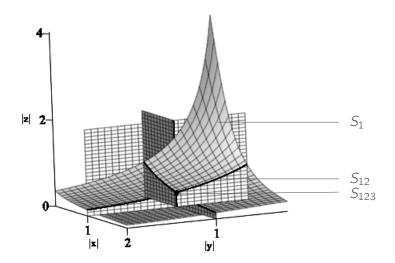
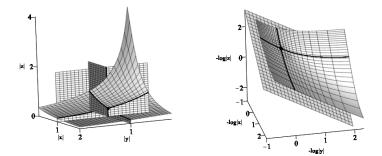


 Image of \mathcal{V} under $(x, y, z) \mapsto (-\log |x|, -\log |y|, -\log |z|)$



 Stratum
 Critical points
 value of $|xyz|^{-1}$
 S_1 $(w^2, w, w/3)$, $(w, w^2, w^2/3)$ 1/3

 S_{12} S_{23} 1/3

 S_{123} (1, 1, 1/3) 1/3

A lattice path enumeration problem

Let $S = \{ \swarrow, \rightarrow, \downarrow \}$. T = walks start at (0, 0) end anywhere. Using a reflection principle argument:

$$T(z) = \Delta \frac{\left(1 - \frac{y^2}{x} + \frac{y^3 - x^2y^2}{y^2} + \frac{x^3 - \frac{x^2}{y}}{y^2}\right)}{\left(1 - \frac{zxy(1}{x} + \frac{x}{y} + \frac{y}{y})\right)\left(1 - \frac{x^2y^2}{y^2}\right)}$$

We conclude: Three critical points:

$$(w, w^2, w^2/3), (w^2, w, w/3), (1, 1, 1/3)$$

(Potential for periodicity..)

Exponential growth: $t_n \sim C3^n n^{\alpha}$. Next challenge: find C, α .

Next Steps..

Determine **how** each contributing critical point modulates the dominant exponential term by a subexponential factor.

Summary

Diagonal Asymptotics

Given:

$$F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z}) = \sum f(\mathbf{n})\mathbf{z}^{\mathbf{n}}$$

Determine the asymptotics of f(n, n, ..., n) as $n \to \infty$

- Singular Variety $\mathcal{V} = \{ \mathbf{z} \mid H(\mathbf{z}) = 0 \}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $|\rho_1 \dots \rho_d|^{-1}$ (with value μ , say)
- Minimal critical point ρ contained in both

$$\underbrace{-\log|z_1| - \dots - \log|z_d| = \log \mu}_{\text{a hyperplane}} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}$$

Balanced Binary Words

Let $\mathcal{L} =$ Binary words over {0, 1} with no run of 1s of length 3.

$$\mathcal{L} = (\epsilon + 1 + 11) \cdot (0 \cdot (\epsilon + 1 + 11))^*$$

Parameter: $\chi(w) = (|w|_0, |w|_1)$

$$\mathcal{L}_{=} = \{ w \in \mathcal{L} \mid \chi(w) = (n, n) \}$$
$$\mathcal{L}_{=}(y) = \Delta \frac{1 + x + x^{2}}{1 - y(1 + x + x^{2})}$$

- GB of Critical point equations: $[x^2 1, x + 3y 2]$
- two solutions: (1,1/3) (-1,1)
- $\mu = \min |\rho_1 \dots \rho_d|^{-1} (1, 1/3) \mapsto 3 \qquad (-1, 1) \mapsto 1$
- BUT (1, 1) ∈ T(-1, 1) ⇒ (-1, 1) is not a minimal point because (1, 1) outside of domain of convergence.

$$[y^n]L_=(y) \to \kappa 3^n n^{\alpha}$$

First Principle of Coefficient Asymptotics

The **location** of singularities of an analytic function determines the **exponential order** of growth of its Taylor coefficients.

We connect the boundary of convergence and exponential growth.

Second Principle of Coefficient Asymptotics

The **nature** of the singularities determines the way the dominant exponential term in coefficients is modulated by a subexponential factor.

Nature = geometry of the singular variety at the critical point.

Bibliography

- Analytic Combinatorics in Several Variables. Pemantle and Wilson Cambridge University Press
- Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration.
- Analytic Combinatorics: A Multidimensional Approach. Marni Mishna, CRC Press

