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Motivating question #1

In a given regular language over {0, 1},
what is the proportion of words of length n

that have the same number of 0s and 1s?

(for n large) What about an alphabet of

size k? What about for a context-free

language?

Motivating question #2

Which proportion of sequences of n “king”

chess moves on Z2 start and end at the

origin, and stay in N2? (3-D version?

arbitrary dimension? other possible moves?

regions?)



A Course on Analytic Combinatorics

Objective

Develop tools for analysing the large scale behaviour of combinatorial

classes in a systematic manner.

Strategy

Examine singularities of multivariable combinatorial generating functions

and develop a geometric understanding of its singular structure and

then deduce the asymptotic expressions for counting sequences.

Organization

I. Combinatorial Framework

Combinatorial Calculus

Parameters and Extracted Classes

II. Introductory Singularity Analysis & Asymptotic Expressions

Univariate case

Multivariate case



Recall the Combinatorial Framework



Combinatorial Classes

tree 7→ z#nodes

C (z) = z + 2z2+ 5z3+ 14z4+ 42z5

A class is a set C, and size |·|. The

number of elements of a given size

is finite.

C (z) :=
∑
γ∈C

z |γ|

=
∑
n≥0

cnz
n

cn = # objects of size n

C (z) is the ordinary generating function (OGF) for C



Combinatorial Calculus

C Notes C (z)=
∑

z |γ|

Epsilon {ε} |ε| = 0 1

Atom {◦} |◦| = 1 z

Disjoint Union A + B γ × εA, γ × εB A(z) + B(z)
Cartesian Product A×B (α, β), α ∈ A, β ∈ B A(z)B(z)
Power Ak (α1, . . . , αk), αi ∈ A A(z)k

Sequence Seq(A) = A∗ ε+A +A2 +A3 + . . . 1
1−A(z)

Binary Trees B := {�, �

•
� , �

•
�

•
�

, �

•
�

•
�

, �

•
�

•

�

•
� , . . . }

{•} {�} B ≡ � + • × B2

↓ ↓ ↓ ↓ ↓ ↓
1 z B(z) = z + 1 · B(z)2

=⇒ B(z) = 1−
√
1−4z
2z



Combinatorial Parameters

A parameter of a class is a map χ : C→ Z
e.g. # 0 in a binary word ; end position (i , j) of a lattice walk

C (u, z) :=
∑
γ∈C

uχ(γ)x |γ| =
∑
n≥0

(∑
k∈Z

ck,nu
k

)
zn.

ck,n = # objects of size n with parameter value k .

C (u, z) ∈ N[u, u−1][[z ]] Power series with Laurent polynomial coefficients

Example

χ(w) = |w |◦ = # ◦s a word in {◦, •}∗: χ(◦ • • ◦ •) = 2

C (u, z) = 1 + (u + 1) z +
(

u2 + 2 u + 1
)

z2 +
(

u3 + 3u2 + 3u + 1
)

z3 + . . . .

C (u, z) =

(
1

1− (z + uz)

)
. (1)

Treat it as a 2-dimensional parameter: w 7→ (χ(w), |w |).



Balanced word classes

L = {binary expansions of n | n ≡ 0 mod 3.} Size = length of string

L = {ε,
0
0, 00, 000, . . . ,

3
11, 011, 0011, . . . ,

6
110, 0110, 00110, . . . ,

9
1001, 01001,

12
1100, 01100, . . . ,

15
1111, 01111, . . . }

S-regular specification: L = (0 + (1(01∗0)∗1))∗

Parameter: χ(w) = (|w |0 , |w |1 , |w |) = (#0s in w ,#1s in w , |w |)
Balanced sub-class:

L= = {w ∈ L | χ(w) = (n, n, 2n), n ≥ 0}
= {w ∈ L | #0s = #1s}
= {1001, 0011, 0110, 1100, 010101, 101010, 11100001, 10011001,

10000111, 00101101, 01011010, 00111001, 00100111, . . . }

more interesting: L ⊆ {a1, a2, . . . , ad}∗ with χi(w) = # of ai in w .



Excursions

S = {↑, ↓,←,→} = is a set of steps.

Consider walks starting at (0, 0) taking

steps from S . Unrestricted walks are

S-regular:

{↑, ↓,←,→}∗

Define parameter χ(w):= (endpoint of w ,

# of steps).

Endpoint is an inherited parameter∑
walkZ2 ((0, 0)

n→ (k , `)) xky `tn =
1

1− t(x + 1/x + y + 1/y)

Excursions are a derived class

E = {w ∈ {↑, ↓,←,→}∗ | χ(w) = (0, 0, n)}



Diagonals

The central diagonal maps series expansions to series expansions. e.g.

∆ : K [[z1, z−11 , . . . , zd , z−1d ][[t]]→ K [[t]].

defined as:

∆F (z, t) = ∆
∑
k≥0

∑
n∈Zd

f (n1, n2, . . . , nd , k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn.

(2)

∆(z21 z2t + 3z1z2t+ 7z1z2t
2 + 5z21z

2
2t
2) = 3t + 5t2



Example: Multinomials

∆
1

1− x − y
=
∑
n≥0

(
2n

n, n

)
yn.

∆(r ,s) 1

1− x − y
=
∑
n≥0

(
rn + sn

rn, sn

)
yn.

∆r
1

1− (z1 + · · ·+ zd)
=
∑
n≥0

(
n(r1 + · · ·+ rd)

nr1, . . . , nrd

)
znd .



Balanced word classes

L ⊆ {0, 1}2

Parameter χ(w) = (|w |0 , |w |1 , n) = (#0s in w ,#1s in w)

L= := {w ∈ L | #0s = #1s}

L=(y) = ∆L(x , y)



Excursions

Excursions: start and end at (0, 0) with

steps from S = :

E = {w ∈ {↑, ↓,←,→}∗ | χ(w) = (0, 0)}

OGF for excursions:∑
walkZ2 ((0, 0)

n→ (0, 0)) tn = [x0y0]
1

1− t(x + 1/x + y + 1/y)

= ∆
1

1− txy(1/x + x + 1/y + y))



Walks confined to a quadrant - Reflection Principle

∑
n≥0

walkN2((0, 0)
n−→ (0, 0)) tn

+1−1

−1+1

= [x1y1]
xy − x/y + (xy)−1 + y/x

(1− t(x + 1/x + y + 1/y))

= CT

(
x − 1x

) (
y − 1y

)
xy(1− t(x + 1/x + y + 1/y))

= ∆
xy
(

x − 1x
) (

y − 1y
)

1− txy(x + 1/x + y + 1/y)

= ∆
(x2 − 1)(y2 − 1)

1− t(x2y + y + xy2 + x)
.



II. Singularities and Critical Points



Objective

Systematic methods to determine asymptotic estimates for the

number of objects of size n in combinatorial class C.

Find simple Φ(n) with limn→∞Φ(n)/cn = 1 eg. Φ(n) = γknn−r .

Today

We focus on diagonals of multivariable rationals

∆
G (z, t)

H(z, t)
= ∆

∑
k≥0

∑
n∈Zd

f (n, k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn.

Analytic Strategy

Understand the singularity structure of its OGF C (t)

Relate the singularities of
G(z,t)
H(z,t) and C (t) = ∆

G(z,t)
H(z,t) .

Today: Look at the geometry of the variety of points annihilating

H.



Univariate Singularity



Poles

F (z) =
1

(1− z3)(1− 4z)2(1− 5z4)
=
∑

fnz
n

= 1 + 8z + 54 z2 + 304 z3 + 1599 z4 + 7928 z5 + O
(

z6
)

fn ∼ const(1/4)−nn−1

Re z

Im z

C

Poles of F (z)

Value of |F (z)|



Branch Point Singularity at 1/4

C (z) =
1−
√

1− 4z

2z
= 1+z +2z2+5z3+14z4+42z5+132z6+O(z7)

cn ∼ const(1/4)−nn−3/2

|C (z)|
Im C (z)



Exponential growth and the radius of convergence

F (z) =
∑
n≥0

fn zn ∈ R>0[[z ]]

=⇒ there is a positive real valued singular point ρ ∈ R>0 on the circle

of convergence. (Pringshheim)

Exponential growth

µ := lim sup
n→∞

fn
1/n

“fn ∼ κµnnα ′′

ROC (F (z)) = ρ =⇒ µ = ρ−1



Convergence and the Exponential Growth

The radius of convergence F (z) = ρ

=⇒ exponential growth of fn = ρ−1.

1

(1− z3)(1− 4z)2(1− 5z4)

lim
n→∞

r
1/n
n = 4

1−
√

1− 4z

2z

lim
n→∞

c
1/n
n = 4



The first principle of coefficient asymptotics

The location of singularities of an analytic function

determines the exponential order of growth of its

Taylor coefficients.

We connect the boundary of convergence and exponential growth.



Preview: An analogy

Here is a rough idea of what the multivariable case looks like.

Univariate Rationals

F (z) =
G (z)

H(z)
=
∑

fnz
n

fn ∼ Cµnnα

dominant singularity: ρ ∈ C on circle of

convergence satisfying H(ρ) = 0

µ = |ρ|−1

Multivariable Rationals

∆
G (z1, . . . , zd)

H(z1, . . . , zd)
=
∑

fnn...nz
n
d

fnn...n ∼ Cµnnα

minimal critical point: (ρ1, . . . , ρd) on

the boundary of convergence satisfying

H(ρ1 . . . , ρd) = 0 + other equations.

µ = |ρ1 . . . ρd |−1



Multivariable Series



Convergence of multivariable series

View the series as an iterated sum.∑
nd

(
. . .

(∑
n1

a(n1, . . . , nd)zn11

)
. . .

)
zndd

The domain of convergence, denoted D ⊆ Cd , is the interior of the set of

points where the series converges absolutely.

The polydisk of a point z is the domain

D(z) = {z′ ∈ Cd : |z ′i | ≤ |zi |, 1 ≤ i ≤ d}.

The torus associated to a point is

T (z) = {z′ ∈ Cd : |z ′i | = |zi |, 1 ≤ i ≤ d}.

A domain of convergence is multicircular.

z = (z1, . . . , zd) ∈ D =⇒ T (z) ⊆ D =⇒ (ω1z1, . . . , ωdzd) ∈ D, |ωk | = 1



What is a singularity of G/H?

The set of singularities of G (z)/H(z) is the algebraic variety

V := {z : H(z) = 0}.

minimal points (working definition)

The set of minimal points of a series expansion of F is the set of

singular points on the boundary of convergence.

V ∩ ∂D

A point z is strictly minimal if V ∩D(z) = {z}



Example: 1D

Definitions

The set of minimal points of a

series development of F is the set

of singular points on the boundary

of convergence.

V ∩ ∂D

A point z is strictly minimal if

V ∩D(z) = {z}

Re z

Im z

C

H(z) = (1− z3)(1− 4z)2(1− 5z4)

∂D = {z : |z | = 1/4}, V = {1/4, 1,w ,w2, (15)1/4}
minimal point: V ∩D = {1/4}, strictly minimal.



Example: F (x , y ) = 1
1−x−y

Taylor expansion:
∑
k,`

(
k+`
k

)
xky `

Convergence at (x , y)
=⇒ convergence at (|x | , |y |)

F (|x |, |y |) =
1

1− |x | − |y | =⇒ |x |+ |y | < 1

∂D = {(x , y) ∈ C2 | |x |+ |y | = 1}
V = {(z , 1− z) | z ∈ C} D

V

|x |

|y |

1

1

Minimal points V ∩ ∂D

{(z , 1− z) | |z |+ |1− z | = 1} = {(x , 1− x) | x ∈ R>0}

All strictly minimal.



A first formula for exponential growth for diagonal

coefficients



Convergence and exponential growth
Given series

∑
a(n) zn and z ∈ D,∑

n∈Nd
a(n)|z1|n1 |z2|n2 . . . |zd |nd is convergent (absolute conv).

=⇒
∑
n∈N

a(n, n, . . . , n) |z1|n|z2|n . . . |zd |n is convergent (subseries).

=
∑
n

a(n, n, . . . , n)|z1z2 . . . zd |n

=⇒ t = |z1z2 . . . zd | is within the radius of convergence of ∆F (z).

µ ≤ lim sup
n→∞

|a(n, n, . . . , n)|1/n ≤ |z1z2 . . . zd |−1 with ∀z ∈ D

≤ inf
(z1,...,zd )∈D

|z1z2 . . . zd |−1.

Thm: Under conditions of non-triviality, the infimum is reached at a minimal

point:

µ = inf
z∈∂D∩V

|z1 . . . zd |−1. (3)



Example: Binomials F (x , y ) = (1− x − y )−1

Minimal points: ∂D ∩ V = {(x , 1− x) ∈ R2 : 0 < x < 1}.

µ = lim sup
n→∞

a(n, n)1/n = inf
(x ,y)∈∂D∩V

|xy |−1 = inf
x∈R:0≤x≤1

(x(1− x))−1 = 4.

We can consider non-central diagonals.

lim sup
n→∞

a
1/n
rn sn = inf

(x ,y)∈∂D
|x ry s |−1 = inf

x∈R
(x r (1− x)s)−1.

This is minimized at x = r
r+s .

The exponential growth:

µ =

((
r

r + s

)r ( s

r + s

)s)−1
.

We got lucky here – we could easily write y in terms of x . What to do

in general?



Computing critical points



The height function h

Astuce

We convert the multiplicative minimization to a linear minimization

using logarithms.

To minimize |z1 . . . zd |−1, minimize:

− log |z1 . . . zd | = − log |z1| − · · · − log |zd |︸ ︷︷ ︸
linear in log |zi |

Define a function h : V∗ → R: V∗ = V \ {z : z1 . . . zd 6= 0}

(z1, . . . , zd) 7→ − log |z1| − · · · − log |zd |.

The map h is smooth =⇒ minimized at its critical points. When

r = (1, . . . , 1), the critical points are solutions to the critical point

equations:

H(z) = 0, z1
∂H(z)

∂z1
= zj

∂H(z)

∂zj
, 2 ≤ j ≤ d .



Critical points

Critical points are potential locations of minimizers of |z1 . . . zd |−1.
In the most straightforward cases it suffices to compare the values of

this product and select the critical point that is the global minimizer.

A critical point is strictly minimal if it is on the boundary of

convergence of the series.

In these generating functions the asymptotics is driven by a finite

number of isolated minimal points. Simplest case.



Visualize Critical Points

Critical points of (1− x − y )−1 for r = (1, 1)

1 ρ ∈ V ∩ ∂D ρ = (1/2, 1/2)

2 minimize h(x , y) = − log |x | − log |y | h(x , y) = −2 log 2

3 µ = |ρ1ρ2|−1 limn→∞
(
2n
n

)1/n
= 4

D

V

|x |

|y |

1

1

− log |x |

− log |y |
h(x , y) = −2 log 2

D

V

(x , y) 7→ (− log |x | ,− log |y |)



Trinomial (1− x − y − z)−1

Critical points

1 ρ ∈ V ∩ ∂D ρ = (13 ,
1
3 ,
1
3)

2 minimize h(x , y , z) = − log |x | − log |y | − log |z |
h(x , y , z) = 3 log 3

3 µ = |ρ1ρ2ρ3|−1 limn→∞
(
3n
n,n,n

)1/n
= 27



Non-central diagonals

If we want a non-central diagonal, we want to minimize

|z r11 . . . z rdd |
−1 in ∂D ∩ V.

Instead take height function here is

(z1, . . . , zd) 7→ −r1 log |z1| − · · · − rd log |zd |.

The equations change. For example, in 2D, diagonal (r , s), solve the

equations:

H(x , y) = 0, s x
∂H(x , y)

∂x
= r y

∂H(x , y)

∂y
.



Critical point depends on the diagonal ray

Delannoy Numbers

d(rn, sn) := [x rny sn](x + y + xy)n

(r , s) −r log |x | − s log |y | ρ

(1, 1) −−−−−− ( 1√
2−1 ,

1√
2−1 )

(5, 2) − − − ( 15 ,
2
3 )



Summary: To Find Critical Points

Given: G (x , y)/H(x , y) =
∑

fk,` x jy k , irreducible H

(r , s) ∈ R2>0
Determine: µ = lim supn→∞ f

1/n
rn,sn, critical points ρ

Find solutions {ρ} to the (r , s)-critical point equations.

Hint: Find Gröbner basis of

[H, s*x*diff(H, x)-r*y*diff(H,y)]

Ensure T (ρ) ⊂ ∂D
Set µ = min |ρ1 . . . ρd |−1 among those solutions with no 0

coordinate.

We use the set of such ρ to find the sub-exponential growth

(tomorrow)

Nontriviality requirement: ρ to be smooth as a function of (r , s)
near where you want it.



Balanced Binary Words
Let L =Binary words over {0, 1} with no run of 1s of length 3.

L = (ε+ 1 + 11) · (0 · (ε+ 1 + 11))∗

Parameter: χ(w) = (|w |0 , |w |1)

L= = {w ∈ L | χ(w) = (n, n)}

L=(y) = ∆
1 + x + x2

1− y(1 + x + x2)

GB of Critical point equations: [x2 − 1, x + 3y − 2]

two solutions: (1, 1/3) (−1, 1)

µ = min |ρ1 . . . ρd |−1 (1, 1/3) 7→ 3 (−1, 1) 7→ 1

BUT (1, 1) ∈ T (−1, 1) =⇒ (−1, 1) is not a minimal point

because (1, 1) outside of domain of convergence.

[yn]L=(y)→ κ3nnα



Visualize the boundary



Simple Excursions

Let E be the set of simple excursions in the entire plane, that is walks

that start and end at the origin, taking unit steps {↑, ↓,←,→}

e(n) = [x0y0] (x + 1/x + y + 1/y)n

We can deduce:

E (z) = ∆
1

1− zxy
(

x + 1
x + y + 1

x

)
Any critical point ρ = (x , y , z) will have z = 1

xy(x+1/x+y+1/y) from

H = 0.

Critical points: (1, 1, 1/4), (−1,−1,−1/4)

e(2n)1/2n = inf
ρ∈∂D∩V

|xyz |−1 = inf
0≤x ,y≤1

|x + 1/x + y + 1/y | = 42



Excursions for any finite step set

This phenomena is general. Let S be any weighted finite 2D step set

S(x , y) =
∑

(j ,k)∈S

w(j , k) x jy k

e(n) = [x0y0]S(x , y)n

We can deduce:

E (z) = ∆
1

1− zxyS(1/x , 1/y)

Any critical point ρ = (x , y , z) will have z = 1
xyS(1/x ,1/y) from H = 0.

lim sup
n→∞

e(n)
1
n = inf

ρ∈∂D∩V
|xyz |−1 = inf

ρ∈∂D
|S(1/x , 1/y)|

The minimum is found using the critical point eqn.



What if H factors?

Suppose H factors nontrivially into squarefree factors:

H = H1 . . .Hk

CASE A: Hj(ρ) = 0 =⇒ Hk(ρ) 6= 0 for j 6= k : OK.

CASE B: Must decompose V into strata, and find critical points for

each stratum independently. **Important to keep track of the

co-dimension of the stratum for later.**



Walks in the quarter plane that end anywhere

Let S = {↖,→, ↓}. T= walks start at (0, 0) end anywhere. Using a

reflection principle argument:

T (z) = ∆

(
1− y2/x + y3 − x2y2 + x3 − x2/y

)
(1− zxy(1/x + x/y + y)) (1− x)(1− y)

(4)

Critical points

We divide VH into strata and we determine critical points from each of

them.



Image of V under (x , y , z) 7→ (|x | , |y | , |z |)

S1

S12
S123

Misleading picture as all three critical points appear to be in S123.



Image of V under (x , y , z) 7→ (− log |x | ,− log |y | ,− log |z |)

Stratum Critical points value of |xyz |−1

S1 (w2,w ,w/3) , (w ,w2,w2/3) 1/3

S12
S23
S123 (1, 1, 1/3) 1/3



A lattice path enumeration problem

Let S = {↖,→, ↓}. T= walks start at (0, 0) end anywhere. Using a

reflection principle argument:

T (z) = ∆

(
1− y2/x + y3 − x2y2 + x3 − x2/y

)
(1− zxy(1/x + x/y + y)) (1− x)(1− y)

We conclude: Three critical points:

(w ,w2,w2/3), (w2,w ,w/3), (1, 1, 1/3)

(Potential for periodicity..)

Exponential growth: tn ∼ C 3nnα.

Next challenge: find C , α.



Next Steps..

Determine how each contributing critical point

modulates the dominant exponential term by a

subexponential factor.



Summary

Diagonal Asymptotics

Given:

F (z) = G (z)/H(z) =
∑

f (n)zn

Determine the asymptotics of f (n, n, . . . , n) as n →∞

Singular Variety V = {z | H(z) = 0}
Minimal Points: ∂D ∩ V

Critical points minimize: |ρ1 . . . ρd |−1 (with value µ, say)

Minimal critical point ρ contained in both

− log |z1| − · · · − log |zd | = logµ︸ ︷︷ ︸
a hyperplane

ρ ∈ ∂D ∩ V



Balanced Binary Words
Let L =Binary words over {0, 1} with no run of 1s of length 3.

L = (ε+ 1 + 11) · (0 · (ε+ 1 + 11))∗

Parameter: χ(w) = (|w |0 , |w |1)

L= = {w ∈ L | χ(w) = (n, n)}

L=(y) = ∆
1 + x + x2

1− y(1 + x + x2)

GB of Critical point equations: [x2 − 1, x + 3y − 2]

two solutions: (1, 1/3) (−1, 1)

µ = min |ρ1 . . . ρd |−1 (1, 1/3) 7→ 3 (−1, 1) 7→ 1

BUT (1, 1) ∈ T (−1, 1) =⇒ (−1, 1) is not a minimal point

because (1, 1) outside of domain of convergence.

[yn]L=(y)→ κ3nnα



First Principle of Coefficient Asymptotics

The location of singularities of an analytic function

determines the exponential order of growth of its

Taylor coefficients.

We connect the boundary of convergence and exponential growth.



Second Principle of Coefficient Asymptotics

The nature of the singularities determines the way the

dominant exponential term in coefficients is modulated

by a subexponential factor.

Nature = geometry of the singular variety at the critical point.
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