
Analytic Combinatorics

Marni Mishna

Department of Mathematics

Simon Fraser University

Burnaby Canada

EJCIM • “Bordeaux”, France





Motivating question #1

In a given regular language over {0, 1},
what is the proportion of words of length n

that have the same number of 0s and 1s?

(for n large) What about an alphabet of

size k? What about for a context-free

language?

Motivating question #2

Which proportion of sequences of n “king”

chess moves on Z2 start and end at the

origin, and stay in N2? (3-D version?

arbitrary dimension? other possible moves?

regions?)



A Course on Analytic Combinatorics

Objective

Develop tools for analysing the large scale behaviour of combinatorial

classes in a systematic manner.

Strategy

Examine singularities of multivariable combinatorial generating functions

and develop a geometric understanding of its singular structure and

then deduce the asymptotic expressions for counting sequences.

Organization

I. Combinatorial Framework

Combinatorial Calculus

Parameters and Extracted Classes

II. Introductory Singularity Analysis & Asymptotic Expressions

Univariate case

Multivariate case



I. Combinatorial Functional Equations



Combinatorial Classes

tree 7→ z#nodes

C (z) = z + 2z2+ 5z3+ 14z4+ 42z5

A class is a set C, and size |·|. The

number of elements of a given size

is finite.

C (z) :=
∑
γ∈C

z |γ|

=
∑
n≥0

cnz
n

cn = # objects of size n

C (z) is the ordinary generating function (OGF) for C



Immediate Objectives

cn =? Enumerate objects exactly or

asymptotically

Understand the large scale behaviour of the

objects in a class

Interpret functional equations combinatorially

Combinatorial understanding of solutions to

linear differential equations?

See study of holonomic functions

Determine analytic criteria for combinatorial

hierarchies (eg. structure of recursively

enumerable languages)

Everything is non-holonomic unless it is holonomic by design.

Flajolet, Gerhold and Salvy



Combinatorial Calculus

C Notes C (z)=
∑

z |γ|

Epsilon {ε} |ε| = 0 1

Atom {◦} |◦| = 1 z

Disjoint Union A + B γ × εA, γ × εB A(z) + B(z)
Cartesian Product A×B (α, β), α ∈ A, β ∈ B A(z)B(z)
Power Ak (α1, . . . , αk), αi ∈ A A(z)k

Sequence Seq(A) = A∗ ε+A +A2 +A3 + . . . 1
1−A(z)

Binary Words {ε, ◦, •, ◦◦, ◦•, •◦, ••, ◦◦◦, . . . }
{◦} {•} A = {◦, •} C = A∗

↓ ↓ ↓ ↓ ↓ ↓
z z A(z) = 2z C (z) = 1

1−A(z)
=⇒ C (z) = 1

1−2z
=⇒ C (z) =

∑
2nzn =⇒ cn = 2n



Combinatorial Calculus

C Notes C (z)=
∑

z |γ|

Epsilon {ε} |ε| = 0 1

Atom {◦} |◦| = 1 z

Disjoint Union A + B γ × εA, γ × εB A(z) + B(z)
Cartesian Product A×B (α, β), α ∈ A, β ∈ B A(z)B(z)
Power Ak (α1, . . . , αk), αi ∈ A A(z)k

Sequence Seq(A) = A∗ ε+A +A2 +A3 + . . . 1
1−A(z)

Binary Trees B := {�, �

•
� , �

•
�

•
�

, �

•
�

•
�

, �

•
�

•

�

•
� , . . . }

{•} {�} B ≡ � + • × B2

↓ ↓ ↓ ↓ ↓ ↓
1 z B(z) = z + 1 · B(z)2

=⇒ B(z) = 1−
√
1−4z
2z



Specifications

Generically we specify a combinatorial class by a set of combinatorial

equations (like we have just seen):

C1 = Φ1(Z,C1, . . . ,Cr )

...

Cr = Φr (Z,C1, . . . ,Cr ).

(1)

.... and deduce a system of functional equations satisfied by the

generating functions:

C1(z) = Φ1(z ,C1(z), . . . ,Cr (z))

...

Cr (z) = Φr (z ,C1(z), . . . ,Cr (z)).

(2)

Cyclic dependencies change the nature of the generating function.



Acyclic Dependencies: S-regular classes

Combinatorial classes specified using +,×, ∗, Atoms, and Epsilons with

no cyclic dependencies are S-regular classes.

L = Seq({0}+ ({1} × Seq({0} × Seq({1})× {0})× {1}))

= (0 + (1(01∗0)∗1))∗ = {ε, 0, 00, 11, 000, 011, 1001, 10101, . . . }

L(z) =
1

1−
(

z + z 1
1−z 1

1−z z

)

Theorem

The generating function of an S-regular class is a rational function.

Remark: Not all rational functions Taylor series in N[[z ]] arise this way.

(∃ singularity criteria)



Cyclic Dependencies: Algebraic Classes

Well defined combinatorial classes specified using +,×, Atoms, and

Epsilons (using possibly cyclic dependencies) are algebraic classes.

eg. B ≡ �+ • ×B×B

Theorem

The generating function of an algebraic class is an algebraic function.

(It satisfies a system of polynomial relations)

P(x , y) = x + xy2 − y =⇒ P(x ,B(x)) = 0

Criterion: If a class has a transcendental OGF, it is not an algebraic

class.

Remark: Not all algebraic functions with series in N[[z ]] arise this way.

(∃ asymptotic criteria)



Derivation Tree

The history of rules expanded is encoded in derivation tree.

We identify derivation trees and elements

Motzkin Paths M

Walks with steps {↗,↘,→} confined to

the upper half plane.

M ≡ ε+→M+↗M↘M.

−→↗
−→↘∈M

M

→ M

↗ M

→ M

ε

↘ M

ε



This is just the start – we can define other combinatorial operators

using sets, cycles, labellings, .... and determine similar calculus. Covers

permutation classes, functional graphs, three connected labelled planar

graphs. The book Analytic Combinatorics of Flajolet and Sedgewick is

your best resource for a deep study.

We will go another way, however.



Combinatorial Parameters



Combinatorial Parameters

A parameter of a class is a map χ : C→ Z
e.g. # → steps ; # leaves in a tree ; end position of a walk

C (u, z) :=
∑
γ∈C

uχ(γ)x |γ| =
∑
n≥0

(∑
k∈Z

ck,nu
k

)
zn.

ck,n = # objects of size n with parameter value k .

C (u, z) ∈ N[u, u−1][[z ]] Power series with Laurent polynomial coefficients

Example

χ(w) = |w |◦ = # ◦s a word in {◦, •}∗: χ(◦ • • ◦ •) = 2

C (u, z) = 1 + (u + 1) z +
(

u2 + 2 u + 1
)

z2 +
(

u3 + 3u2 + 3u + 1
)

z3 + . . . .

C (u, z) =

(
1

1− (z + uz)

)
. (3)

Treat it as a 2-dimensional parameter: w 7→ (χ(w), |w |).



Inherited parameters

The d-dimensional parameter χ is inherited from ξ and ζ if, and only

if . . .

C = A+B

χ(γ) =

{
ξ(γ) γ ∈ A

ζ(γ) γ ∈ B

=⇒ C (z1, . . . , zd) = Cχ(z) = Aξ(z) + Bζ(z)

C = A×B

χ(α, β) = ξ(α) + ζ(β).

=⇒ C (z1, z2, . . . , zd) = Cχ(z) = Aξ(z)Bζ(z)

e.g. C = A∗;A = {◦, •};χ(w) = (|w |◦ , |w |).

Systematic translation of structural parameters to OGF



Derived Classes



Derived Classes

Given a class C, multidimensional inherited parameter χ : C→ Zd , and

d − 1-dimensional vector r , define a derived class of C as a class

Cχ,r =
⋃
n

{γ ∈ C | χ(γ) = (r1n, . . . , rd−1n, n)}

Fixed Value

If r = (0, 0, . . . , 0), then Cχ,r is the subset of objects where the

parameter is always zero. Its OGF is the constant term of C (z) with

respect to z1, . . . , zd−1 .

Balanced Subclasses

For χ counts occurrences of subobjects, consider r = (1, 1, . . . , 1): The

subobjects occur equally.

After two examples, we consider to how find the generating functions of

derived classes.



Balanced word classes

L = {binary expansions of n | n ≡ 0 mod 3.} Size = length of string

L = {ε,
0
0, 00, 000, . . . ,

3
11, 011, 0011, . . . ,

6
110, 0110, 00110, . . . ,

9
1001, 01001,

12
1100, 01100, . . . ,

15
1111, 01111, . . . }

S-regular specification: L = (0 + (1(01∗0)∗1))∗

Parameter: χ(w) = (|w |0 , |w |1 , |w |) = (#0s in w ,#1s in w , |w |)
Balanced sub-class:

L= = {w ∈ L | χ(w) = (n, n, 2n), n ≥ 0}
= {w ∈ L | #0s = #1s}
= {1001, 0011, 0110, 1100, 010101, 101010, 11100001, 10011001,

10000111, 00101101, 01011010, 00111001, 00100111, . . . }

more interesting: L ⊆ {a1, a2, . . . , ad}∗ with χi(w) = # of ai in w .



Excursions

S = {↑, ↓,←,→} = is a set of steps.

Consider walks starting at (0, 0) taking

steps from S . Unrestricted walks are

S-regular:

{↑, ↓,←,→}∗

Define parameter χ(w):= (endpoint of w ,

# of steps).

Endpoint is an inherited parameter∑
walkZ2 ((0, 0)

n→ (k , `)) xky `tn =
1

1− t(x + 1/x + y + 1/y)

Excursions are a derived class

E = {w ∈ {↑, ↓,←,→}∗ | χ(w) = (0, 0, n)}



Diagonals

The central diagonal maps series expansions to series expansions. e.g.

∆ : K [[z1, z−11 , . . . , zd , z−1d ][[t]]→ K [[t]].

defined as:

∆F (z, t) = ∆
∑
k≥0

∑
n∈Zd

f (n, k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn. (4)

∆(z21 z2t + 3z1z2t+ 7z1z2t
2 + 5z21z

2
2t
2) = 3t + 5t2

Defined for any series. Appear in many places in mathematics

We use diagonals to describe the generating functions of derived classes.



Example: Multinomials

Central diagonal

∆
1

1− x − y
= ∆

∑
n≥0

(x + y)n = ∆
∑
`≥0

∑
k≥0

(
`+ k

k

)
xky ` =

∑
n≥0

(
2n

n, n

)
yn.

Off center diagonals

∆(r ,s) 1

1− x − y
=
∑
n≥0

(
rn + sn

rn, sn

)
yn.

This example generalizes naturally to arbitrary dimension, using

multinomials:

∆r
1

1− (z1 + · · ·+ zd)
=
∑
n≥0

(
n(r1 + · · ·+ rd)

nr1, . . . , nrd

)
znd .



Balanced word classes

L = {binary expansions of n | n ≡ 0 mod 3.}
Size = length of string

L = (0 + (1(01∗0)∗1))∗

Parameter χ(w) = (|w |0 , |w |1) = (#0s in w ,#1s in w)

L= = {w ∈ L | #0s = #1s}

= {ε, 1001, 0011, 0110, 1100, 010101, 101010, 11100001, 10011001, . . . }

L(x , y) =
1

1−
(

x + y2

1− x2

1−y

) L=(y) = ∆L(x , y)

L=(y) = ∆
(

1 + x + ..+ y2(1 + 2x + 4x2 + ..) + y3(x2 + 2x3 + 5x4 + ..) + . . .
)

= 1 + 4y2 + 2y3 + 36y4 + . . .

(size by half length)



Other subseries extraction as diagonal
F (z, t) with series ∈ K [[z1, z−11 , . . . , zd , z−1d ][[t]]:∑

k≥0

∑
n∈Zd

f (n, k) zntk

Constant Term

CT F (z, t) =
∑
n≥0

f (0, 0, . . . , 0, n) tn

= ∆F

(
1

z1
, . . . ,

1

zd
, z1z2 . . . zd t

)

Positive Series

[z≥01 . . . z≥0k ]F (x, t) =
∑
n∈Nd

f (n, k) zntk

= ∆

F
(
1
z1
, . . . , 1zd , z1z2 . . . zd t

)
(1− z1) . . . (1− zk)





Excursions

Excursions: start and end at (0, 0) with

steps from S = :

E = {w ∈ {↑, ↓,←,→}∗ | χ(w) = (0, 0)}

OGF for excursions:∑
walkZ2 ((0, 0)

n→ (0, 0)) tn = [x0y0]
1

1− t(x + 1/x + y + 1/y)

= ∆
1

1− txy(1/x + x + 1/y + y))



The set of combinatorial classes with OGF a diagonal of N-rational is

smaller than you’d like. (does not include Catalan!)

Differences of these classes are a wider class of series.



Walks confined to a quadrant - Reflection Principle

∑
n≥0

walkN2((0, 0)
n−→ (0, 0)) tn

+1−1

−1+1

= [x1y1]
xy − x/y + (xy)−1 + y/x

(1− t(x + 1/x + y + 1/y))

= CT

(
x − 1x

) (
y − 1y

)
xy(1− t(x + 1/x + y + 1/y))

= ∆
xy
(

x − 1x
) (

y − 1y
)

1− txy(x + 1/x + y + 1/y)

= ∆
(x2 − 1)(y2 − 1)

1− t(x2y + y + xy2 + x)
.



Diagonals and combinatorial generating functions

Univariate algebraic functions are diagonals of bivariate rationals.

Holonomic functions

Algebraic functions are Holonomic

Diagonals of Holonomic functions are Holonomic

OGFs of derived subclasses of algebraic and S-regular

Reflection principle – walks in Weyl chambers (from representation

theory)

Lingering questions

Are combinatorial holonomic functions always diagonals? Are holomonic

classes always (in bijection with) a derived class of an algebraic or

regular? algebraic combination of derived classes?



Taxonomy of Generating Functions

Rational

Algebraic

Holonomic

Differentiably Algebraic

Hypertranscendental



Conclusion



Classic results of great utility to the combinatorialist

Nature and type of singularities for series solutions of different

equations types

Behaviour near the singularities

Asymptotic form of solutions for algebraic and linear ODE

equations

Results on series with positive coefficients (Pringsheim, Polya

Carlson, Fatou,. . . )

F (z) converges inside the unit disc =⇒ it is a rational function or

transcendental over Q(z).



Transcendency
Transcendental OGF =⇒ class has no algebraic specification.

Trancendancy criterion

[zn]F (z) ∼ Cµnns , s 6∈ Q \ {−1,−2, . . . }

C = {u ∈ {a, b, c}∗ | |u|a 6= |u|b or |u|a 6= |u|c}

{a, b, c}∗ \ C = {u ∈ {a, b, c} | |u|a = |u|b = |u|c}

3n − cn =

(
3n

n, n, n

)
∑

3nzn︸ ︷︷ ︸
rational

−
∑

cnzn =
∑(

3n

n, n, n

)
︸ ︷︷ ︸
∼C 27nn−1︸ ︷︷ ︸

transcendental

zn

=⇒
∑

cnzn transcendental



Conclusion

1 Dictionary between combinatorial specification and OGF functional

equations

2 3 families of combinatorial classes: S-regular, algebraic, derived

subclasses

3 Use results on the nature of solutions to help sort objects and

make effective computation

4 Diagonal operator is used to describe many combinatorial classes

∆F (z, t) = ∆
∑
k≥0

∑
n∈Zd

f (n, k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn.

5 Christol’s Conjecture: Every G-series is a diagonal of a rational

function

6 Next: Given a multivariable rational function, determine the

coefficient asymptotics of a diagonal.
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