Reachability in VAS is not Elementary

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)
Joint work with W. Czerwiński, S. Lasota, R. Lazić and F. Mazowiecki.
Reachability in VAS is not Elementary

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)
Joint work with W. Czerwiński, S. Lasota, R. Lazić and F. Mazowiecki.
Vector addition systems with states (VASS)

(0, 1, -1) → (0, 0, 0) → (0, -1, 2)

States p, q

Actions (0, 1, -1), (0, 0, 0), (1, 0, 0), (0, -1, 2)

Dimension 3

Configurations p(x, y, z), q(x, y, z) with x, y, z ∈ N

Runs p(0, 0, 1) → p(0, 1, 0) → q(0, 1, 0)

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)
Vector addition systems with states (VASS)

States

p, q

Actions

$(0, 0, 0), (0, 1, -1), (0, 0, 0), (0, -1, 2)$

Dimension 3

Configurations $p(x, y, z), q(x, y, z)$ with $x, y, z \in \mathbb{N}$

Runs $p(0, 0, 1) \rightarrow p(0, 1, 0) \rightarrow q(0, 1, 0)$ also written $p(0, 0, 1) \ast - \rightarrow q(0, 1, 0)$
States
p, q

Actions
$(0, 1, -1), (0, 0, 0), (1, 0, 0), (0, -1, 2)$
Vector addition systems with states (VASS)

States

p, q

Actions

$(0, 1, -1), (0, 0, 0), (1, 0, 0), (0, -1, 2)$

Dimension

3
Vector addition systems with states (VASS)

States
p, q

Actions
$(0, 1, -1), (0, 0, 0), (1, 0, 0), (0, -1, 2)$

Dimension
3

Configurations
$p(x, y, z), q(x, y, z)$ with $x, y, z \in \mathbb{N}$
Vector addition systems with states (VASS)

States
p, q

Actions
$(0, 1, -1), (0, 0, 0), (1, 0, 0), (0, -1, 2)$

Dimension
3

Configurations
$p(x, y, z), q(x, y, z)$ with $x, y, z \in \mathbb{N}$

Runs
$p(0, 0, 1) \rightarrow p(0, 1, 0) \rightarrow q(0, 1, 0)$ also written $p(0, 0, 1)^* q(0, 1, 0)$
Petri nets

Model of concurrency with extensive applications in modelling and analysis of
• hardware and software,
• database systems,
• chemical, biological and business processes.

Petri nets \leftrightarrow VASS

Reachability in VAS is not Elementary
Petri nets

Model of concurrency with extensive applications in modelling and analysis of
- hardware and software,
- database systems,
- chemical, biological and business processes.
Petri nets

Model of concurrency with extensive applications in modelling and analysis of:
• hardware and software,
• database systems,
• chemical, biological and business processes.

Petri nets ←→ VASS

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)

Reachability in VAS is not Elementary
Decision problems

Reachability problem:

Given: a VASS \(V \)

Decide: whether \(p(0, \ldots, 0) \xrightarrow{*} q(0, \ldots, 0) \) with \(p \) initial and \(q \) final?
Decision problems

Reachability problem:

\textbf{Given:} a VASS V

\textbf{Decide:} whether $p(0, \ldots, 0) \rightarrow^* q(0, \ldots, 0)$ with p initial and q final?

Coverability problem:

\textbf{Given:} a VASS V

\textbf{Decide:} whether exists v s.t. $p(0, \ldots, 0) \rightarrow^* q(v)$ with p initial and q final?
Decision problems

Reachability problem:

Given: a VASS V

Decide: whether $p(0, \ldots, 0) \xrightarrow{*} q(0, \ldots, 0)$ with p initial and q final?

Coverability problem:

Given: a VASS V

Decide: whether exists v s.t. $p(0, \ldots, 0) \xrightarrow{*} q(v)$ with p initial and q final?

Many problems reduce to reachability or coverability

- Formal languages
- Logic
- Concurrent systems
- Process calculi,...
Reachability state of the art

1976
Expspace lower bound (Lipton)

1981
Decidable (Mayr)

1982
Decidable (Kosaraju)

1992
Decidable (Lambert)

2009-2012
Decidable with Presburger inductive invariants (Leroux)

2015-2019
F_ω upper bound (Leroux and Schmitz)

2019
F_3 lower bound

(Czerwiński, Lasota, Lazić, Leroux and Mazowiecki)

Coverability
Rackoff 1978
Exspace-complete
Reachability state of the art

1976 Expspace lower bound (Lipton)

1981 Decidable (Mayr)

1982 Decidable (Kosaraju)

1992 Decidable (Lambert)

2009-2012 Decidable with Presburger inductive invariants (Leroux)

2015-2019 \mathcal{F}_ω upper bound (Leroux and Schmitz)

2019 \mathcal{F}_3 lower bound (Czerwiński, Lasota, Lazic, Leroux and Mazowiecki)
Reachability state of the art

1976 Expspace lower bound (Lipton)

1981 Decidable (Mayr)
Reachability state of the art

1976 — Expspace lower bound (Lipton)
1981 — Decidable (Mayr)
1982 — Decidable (Kosaraju)
Reachability state of the art

1976 Expspace lower bound (Lipton)
1981 Decidable (Mayr)
1982 Decidable (Kosaraju)
1992 Decidable (Lambert)
2009-2012 Decidable with Presburger inductive invariants (Leroux)
2015-2019 F_ω upper bound (Leroux and Schmitz)
2019 F_3 lower bound (Czerwiński, Lasota, Lazic, Leroux and Mazowiecki)
Reachability state of the art

1976 Expspace lower bound (Lipton)
1981 Decidable (Mayr)
1982 Decidable (Kosaraju)
1992 Decidable (Lambert)
2009-2012 Decidable with Presburger inductive invariants (Leroux)

Fourier-Stieltjes convolution
Reachability state of the art

1976 Expspace lower bound (Lipton)
1981 Decidable (Mayr)
1982 Decidable (Kosaraju)
1992 Decidable (Lambert)
2009-2012 Decidable with Presburger inductive invariants (Leroux)
2015-2019 F_ω upper bound (Leroux and Schmitz)
Reachability state of the art

1976 Expspace lower bound (Lipton)
1981 Decidable (Mayr)
1982 Decidable (Kosaraju)
1992 Decidable (Lambert)
2009-2012 Decidable with Presburger inductive invariants (Leroux)
2015-2019 F_ω upper bound (Leroux and Schmitz)
 F_3 lower bound
 (Czerwiński, Lasota, Lazić, Leroux and Mazowiecki)

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP) Reachability in VAS is not Elementary
Reachability state of the art

1976
Expspace lower bound (Lipton)

1981
Decidable (Mayr)

1982
Decidable (Kosaraju)

1992
Decidable (Lambert)

2009-2012
Decidable with Presburger inductive invariants (Leroux)

2015-2019
F_ω upper bound (Leroux and Schmitz)

2019
F_3 lower bound
(Czerwiński, Lasota, Lazić, Leroux and Mazowiecki)

Coverability
Rackoff 1978
Expspace-complete
Outline

1. Large Configurations
2. Witness of Unreachability
3. Counter Programs
4. Lower Bounds
Large Configurations
The Hopcroft-Pansiot 1979 Example

Exponential behavior
The Hopcroft-Pansiot 1979 Example

Exponential behavior

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP) Reachability in VAS is not Elementary
The Hopcroft-Pansiot 1979 Example

Exponential behavior
Fast Growing Functions

\[F_0(n) = n + 1 \]
\[F_{d+1}(n) = F_d^{n+1}(n) \]
Fast Growing Functions

\[F_0(n) = n + 1 \]
\[F_{d+1}(n) = F_{d+1}^{n+1}(n) \]

\[F_1(n) = 2n + 1 \]
Fast Growing Functions

\[F_0(n) = n + 1 \]
\[F_{d+1}(n) = F_d^{n+1}(n) \]

\[F_1(n) = 2n + 1 \]
\[F_2(n) = 2^{n+1}(n + 1) - 1 \]
Fast Growing Functions

\[F_0(n) = n + 1 \]
\[F_{d+1}(n) = F_{d+1}^{n+1}(n) \]

\[F_1(n) = 2n + 1 \]
\[F_2(n) = 2^{n+1}(n + 1) - 1 \]
\[F_3(n) \sim Tower(n) \]

...
Fast Growing Functions

\[F_0(n) = n + 1 \]
\[F_{d+1}(n) = F_d^{n+1}(n) \]

\[F_1(n) = 2n + 1 \]
\[F_2(n) = 2^{n+1}(n + 1) - 1 \]
\[F_3(n) \sim \text{Tower}(n) \]
...

\[F_d \] weakly computable with VASSes in \(\text{dim } d + 1 \) (Mayr and Meyer 1981).
Outline

1. Large Configurations
2. Witness of Unreachability
3. Counter Programs
4. Lower Bounds
Witness of Unreachability
Presburger Arithmetic

$\text{FO}(\mathbb{N}, +)$

\[\phi(x) := \exists k \ x = k + k \]
\[\phi(x) := x = x + x \]
\[\phi(x, y) := \exists k \ y = x + k \]
\[\phi(x) := \forall k \ k \leq x \land k \neq x \implies k = 0 \]

Theorem (Ginsburg and Spanier 1966)

A subset of \mathbb{N}^d is Presburger (definable) if, and only if, it is semilinear.

I.e. a finite union of sets of the form $\vec{b} + \mathbb{N}\vec{p}_1 + \cdots + \mathbb{N}\vec{p}_k$
Presburger Arithmetic

\[\text{FO}(\mathbb{N}, +) \]

\[2\mathbb{N} \quad \phi(x) := \exists k \ x = k + k \]
Presburger Arithmetic

\[\text{FO}(\mathbb{N}, +) \]

\[2\mathbb{N} \quad \phi(x) := \exists k \ x = k + k \]

\[\{0\} \quad \phi(x) := x = x + x \]
Presburger Arithmetic

\[\text{FO}(\mathbb{N}, +) \]

\[
\begin{align*}
2\mathbb{N} & \quad \phi(x) := \exists k \ x = k + k \\
\{0\} & \quad \phi(x) := x = x + x \\
\{(x, y) & \in \mathbb{N} \times \mathbb{N} \mid x \leq y\} & \quad \phi(x, y) := \exists k \ y = x + k
\end{align*}
\]
Presburger Arithmetic

\[\text{FO}(\mathbb{N}, +) \]

\[2\mathbb{N} \quad \phi(x) := \exists k \ x = k + k \]

\[\{0\} \quad \phi(x) := x = x + x \]

\[\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\} \quad \phi(x, y) := \exists k \ y = x + k \]

\[\{1\} \quad \phi(x) := \forall k \ k \leq x \land k \neq x \Rightarrow k = 0 \]
Presburger Arithmetic

\[\text{FO}(\mathbb{N}, +) \]

\[2\mathbb{N} \quad \phi(x) := \exists k \ x = k + k \]
\[\{0\} \quad \phi(x) := x = x + x \]
\[\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\} \quad \phi(x, y) := \exists k \ y = x + k \]
\[\{1\} \quad \phi(x) := \forall k \ k \leq x \land k \neq x \Rightarrow k = 0 \]

Theorem (Ginsburg and Spanier 1966)

A subset of \(\mathbb{N}^d \) is Presburger (definable) if, and only if, it is *semilinear*. I.e. a finite union of sets of the form \(\vec{b} + \mathbb{N} \vec{p}_1 + \cdots + \mathbb{N} \vec{p}_k \)
Presburger Arithmetic

$\text{FO}(\mathbb{N}, +)$

$2\mathbb{N}$ \hspace{1cm} $\phi(x) := \exists k \ x = k + k$

$\{0\}$ \hspace{1cm} $\phi(x) := x = x + x$

$\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\}$ \hspace{1cm} $\phi(x, y) := \exists k \ y = x + k$

$\{1\}$ \hspace{1cm} $\phi(x) := \forall k \ k \leq x \land k \neq x \Rightarrow k = 0$

Theorem (Ginsburg and Spanier 1966)

A subset of \mathbb{N}^d is Presburger (definable) if, and only if, it is *semilinear*. I.e. a finite union of sets of the form $\vec{b} + \mathbb{N}\vec{p}_1 + \cdots + \mathbb{N}\vec{p}_k$

$2\mathbb{N}$ \hspace{1cm} $0 + \mathbb{N}2$
Presburger Arithmetic

FO(ℕ, +)

\[
2\mathbb{N} \quad \phi(x) := \exists k \ x = k + k
\]

\[
\{0\} \quad \phi(x) := x = x + x
\]

\[
\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\} \quad \phi(x, y) := \exists k \ y = x + k
\]

\[
\{1\} \quad \phi(x) := \forall k \ k \leq x \land k \neq x \Rightarrow k = 0
\]

Theorem (Ginsburg and Spanier 1966)

A subset of \(\mathbb{N}^d\) is Presburger (definable) if, and only if, it is *semilinear*.

I.e. a finite union of sets of the form \(\vec{b} + \mathbb{N}\vec{p}_1 + \cdots + \mathbb{N}\vec{p}_k\)

\[
2\mathbb{N} \quad 0 + \mathbb{N}2
\]

\[
\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\} \quad (0, 0) + \mathbb{N}(0, 1)
\]
Presburger Witness of Unreachability

A witness of unreachability C for a VASS is a set of configurations such that:

- $q(0,\ldots,0) \in C$ for every initial state q.
- $c \rightarrow c' \land c \in C \Rightarrow c' \in C$.
- $q(0,\ldots,0) \not\in C$ for every final state q.

Theorem (Leroux 2009-2012)

For every VASS:

- Either $p(0,\ldots,0) \not\rightarrow q(0,\ldots,0)$ with p initial and q final.
- Or there exists a Presburger witness of unreachability.
A witness of unreachability C for a VASS is a set of configurations such that:

- $q(0, \ldots, 0) \in C$ for every initial state q
- $c \rightarrow c' \land c \in C \implies c' \in C$
- $q(0, \ldots, 0) \not\in C$ for every final state q
A witness of unreachability C for a VASS is a set of configurations such that:

- $q(0, \ldots, 0) \in C$ for every initial state q
- $c \rightarrow c' \land c \in C \Rightarrow c' \in C$
- $q(0, \ldots, 0) \not\in C$ for every final state q

Theorem (Leroux 2009-2012)

For every VASS:

- Either $p(0, \ldots, 0) \rightarrow^* q(0, \ldots, 0)$ with p initial and q final
- Or there exists a Presburger witness of unreachability
Outline

1. Large Configurations
2. Witness of Unreachability
3. Counter Programs
4. Lower Bounds
Counter Programs
Counter Programs

- Operations over bounded counters $\bar{x} \in \{0, \ldots, B\}$:
 - $\bar{x} += 1$
 - $\bar{x} - = 1$
 - \bar{x} zero?
 - \bar{x} max?

- Operations over unbounded counters $x \in \mathbb{N}$:
 - $x += 1$
 - $x - = 1$

- Non deterministic loop
Counter Programs

• Operations over bounded counters $\bar{x} \in \{0, \ldots, B\}$:
 $\bar{x} += 1$
 $\bar{x} -= 1$
 zero? \bar{x}
 max? \bar{x}

• Operations over unbounded counters $x \in \mathbb{N}$:
 $x += 1$
 $x -= 1$

• Non deterministic loop

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)

Reachability in VAS is not Elementary
Examples

\[\overline{a} \mathrel{+}= 2 \quad \rightarrow \quad \overline{a} \mathrel{+}= 1 \]
\[\overline{a} \mathrel{+}= 1 \]

\[x \mathrel{+}= 2 \quad \rightarrow \quad x \mathrel{+}= 1 \]
\[x \mathrel{+}= 1 \]
Examples

\[\bar{a} \mathrel{+}= 2 \quad \rightarrow \quad \bar{a} \mathrel{+}= 1 \]
\[\bar{a} \mathrel{+}= 1 \]

\[x \mathrel{+}= 2 \quad \rightarrow \quad x \mathrel{+}= 1 \]

assert \(\bar{a} = 2 \quad \rightarrow \quad \text{zero? } \bar{a} \]
\[\bar{a} \mathrel{+}= 2 \]
Examples

\[\bar{a} += 2 \rightarrow \bar{a} += 1 \quad \bar{a} += 1 \quad x += 2 \rightarrow x += 1 \]

assert \(\bar{a} = 2 \rightarrow \bar{a} -= 2 \quad \text{zero? } \bar{a} \quad \bar{a} += 2 \]

loop

\[\bar{a} := 2 \rightarrow \bar{a} -= 1 \quad \text{zero? } \bar{a} \quad \bar{a} += 2 \]
Reachability Problems

A run is **complete** if it starts and ends with zero in every counter.
Reachability Problems

A run is **complete** if it starts and ends with zero in every counter.

Reachability problem (for counter programs):

GIVEN: A counter program and a bound \(B \).

DECIDE: Does it have a complete run?
Reachability Problems

A run is **complete** if it starts and ends with zero in every counter.

Reachability problem (for counter programs):

GIVEN: A counter program and a bound B.

DECIDE: Does it have a complete run?

Reachability problem (for VASS):

GIVEN: a VASS V.

DECIDE: whether $p(0, \ldots, 0) \xrightarrow{\ast} q(0, \ldots, 0)$ with p initial and q final?
Reachability Problems

A run is **complete** if it starts and ends with zero in every counter.

Reachability problem (for counter programs):
- **GIVEN**: A counter program and a bound B.
- **DECIDE**: Does it have a complete run?

Reachability problem (for VASS):
- **GIVEN**: a VASS V.
- **DECIDE**: whether $p(0, \ldots, 0) \rightarrow^* q(0, \ldots, 0)$ with p initial and q final?
Reachability in VAS is not Elementary
Reachability in VAS is not Elementary

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)
Counter Programs \rightarrow VASS

1. $\overline{i} += 1$
2. loop
3. $x += 1$
4. $\overline{i} += 1$
5. $\overline{i} -= 1$
6.

with $B = 2$.
counter Programs \rightarrow VASS

1: $\overline{i} += 1$
2: loop
3: $x += 1$
4: $\overline{i} += 1$
5: $\overline{i} -= 1$
6: with $B = 2$.
Outline

1. Large Configurations
2. Witness of Unreachability
3. Counter Programs
4. Lower Bounds
Lower Bounds
Implement with a counter program:

\[n \cdot \prod_{1 \leq i < B} \frac{i + 1}{i} = n \cdot B \]
A weak multiplier by $\frac{3}{2}$

loop

\[
x -\!\!=\!\!= 2 \quad x' +\!\!=\!\!= 3
\]

loop

\[
x' -\!\!=\!\!= 1 \quad x +\!\!=\!\!= 1
\]
A weak multiplier by $\frac{3}{2}$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x'</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{3}{2})14 = 21</td>
<td>0</td>
</tr>
</tbody>
</table>
A weak multiplier by $\frac{3}{2}$

<table>
<thead>
<tr>
<th>x</th>
<th>x'</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\frac{3}{2} \times 14 = 21 \]

<table>
<thead>
<tr>
<th>x</th>
<th>x'</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\frac{3}{2} \times 15 > 22 \]

loop
\[x \leftarrow 2 \quad x' \rightarrow 3 \]

loop
\[x' \leftarrow 1 \quad x \rightarrow 1 \]
A weak multiplier by $\frac{i+1}{i}$

\[
\begin{align*}
\text{loop} & \quad x \leftarrow \bar{i} & x' \leftarrow \bar{i} + 1 \\
\text{loop} & \quad x' \leftarrow 1 & x \leftarrow 1
\end{align*}
\]
A weak multiplier by $\frac{i+1}{i}$

\[
\text{loop} \\
x \leftarrow 1 \\i \leftarrow 1 \\a \leftarrow 1 \\
\text{zero? } \i \\
\text{loop} \\
\i \leftarrow 1 \\
\a \leftarrow 1 \\
\text{zero? } \a
\]

\[
\text{loop} \\
x \leftarrow i \\
x' \leftarrow i + 1 \\
\text{loop} \\
x' \leftarrow 1 \\
x \leftarrow 1
\]
A weak multiplier by $\frac{i+1}{i}$

\[
\begin{align*}
\text{loop} & \\
& x \leftarrow i \quad x' \leftarrow i + 1
\end{align*}
\]

\[
\begin{align*}
\text{loop} & \\
& x' \leftarrow 1 \quad x \leftarrow 1
\end{align*}
\]
Implementing $n \cdot \prod_{1 \leq i < B} \frac{i+1}{i} = n \cdot B$
Implementing $n \cdot \prod_{1 \leq i < B} \frac{i+1}{i} = n \cdot B$

\[
\begin{align*}
x &= x + 1 \quad y &= y + 1 \\
\text{loop} & \quad \begin{cases}
x &= x + 1 \quad y &= y + 1 \\
\bar{i} &= \bar{i} + 1
\end{cases} \quad \text{init } x \text{ and } y \text{ to some } n \geq 1 \\
\text{loop} & \quad \begin{cases}
x &= x - \bar{i} \quad x' &= x' + \bar{i} + 1 \\
\text{loop} & \quad \begin{cases}
x' &= x' - 1 \quad x &= x + 1 \\
\bar{i} &= \bar{i} + 1
\end{cases}
\end{cases} \quad \text{weak multiplier by } \frac{\bar{i}+1}{\bar{i}} \\
\text{max? } \bar{i} & \quad \begin{cases}
x &= x - \bar{i} \quad y &= y - 1 \quad \text{multiplication checker}
\end{cases}
\text{loop} & \quad \begin{cases}
\bar{i} &= \bar{i} - 1 \quad \text{reset } \bar{i}
\end{cases}
\end{align*}
\]
Lower Bounds

Factorial amplifier:

- Simulate counters bounded by $B!$ with counters bounded by B.

VFAS reachability problem:

- F_3 lower bound.
- d-EXPSPACE lower bound in dim $d+13$.

Jérôme Leroux (LaBRI : CNRS & Univ. Bordeaux & Bordeaux-INP)

Reachability in VAS is not Elementary
Lower Bounds

Factorial amplifier:

• Simulate counters bounded by $B!$ with counters bounded by B.

VASS reachability problem:

• F_3 lower bound.
• d-EXPSPACE lower bound in dim $d + 13$.
Conclusion

• Reachability >>> Coverability
Conclusion

• Reachability >>> Coverability

• Plethora of problems are not elementary
 In formal languages, logic, concurrent systems, process calculi,...
Conclusion

- Reachability >>> Coverability

- Plethora of problems are not elementary
 In formal languages, logic, concurrent systems, process calculi,...

- We can do d-EXPSPACE-hardness in dimension $d + 13$ (so fixed)
 Can we do Tower in fixed dimension?
Conclusion

- Reachability >>> Coverability

- Plethora of problems are not elementary
 In formal languages, logic, concurrent systems, process calculi, ...

- We can do \(d\)-EXPSPACE-hardness in dimension \(d + 13\) (so fixed)
 Can we do Tower in fixed dimension?

- The complexity is still open
 Between Tower (\(F_3\)) and Ackermann (\(F_\omega\))
Conclusion

- Reachability >>>> Coverability

- Plethora of problems are not elementary
 In formal languages, logic, concurrent systems, process calculi, ...

- We can do d-EXPSPACE-hardness in dimension $d + 13$ (so fixed)
 Can we do Tower in fixed dimension?

- The complexity is still open
 Between Tower (F_3) and Ackermann (F_ω)

- Up to 15 months postdoc position in Bordeaux and/or Cachan (France)