Decidability of the Domino Problem Under Horizontal Constraints

Julien Esnay
Joint work with Nathalie Aubrun and Mathieu Sablik

Institut de Mathématiques de Toulouse

EJCIM
June 8th 2020
\[\mathcal{A} = \{ \text{ } \} \]

\[\mathcal{F} = \{ \text{ ... } \} \]
\[A = \{ \begin{array}{ccc} \text{yellow} & \text{white} & \text{black} \\ \text{purple} & \text{gray} & \text{black} \\ \text{white} & \text{gray} & \text{black} \end{array} \} \]

\[F = \{ \begin{array}{c} \text{yellow} & \text{white} & \text{purple} \\ \text{black} & \ldots \end{array} \} \]
\[A = \{ \circ, \circ, \bullet, \circ, \circ \} \quad \text{and} \quad F = \{ \circ \bullet, \circ \circ, \circ \bullet \bullet \circ \} \]
\[\mathcal{A} = \{ \bigcirc, \bullet, \bigcirc, \bigcirc, \bullet \} \quad \mathcal{F} = \{ \bigcirc \bullet, \bigcirc \bigcirc, \bigcirc \bullet \bullet \} \]

\[X_\mathcal{F} = \{ x \in \mathcal{A}^\mathbb{Z} | \text{ there is no element of } \mathcal{F} \text{ in } x \} \]

Called a subshift.
\[\mathcal{A} = \{ \bullet, \circ, \circ\} \quad \mathcal{F} = \{ \circ\bullet, \circ\circ, \circ\circ\circ\circ\circ\} \]

\[X_{\mathcal{F}} = \{ x \in \mathcal{A}^\mathbb{Z} \mid \text{there is no element of } \mathcal{F} \text{ in } x \} \]

Called a subshift.
Called a subshift of finite type (SFT) if finite number of constraints.
\[A = \{ \bullet, \circ, \bullet, \circ, \bullet \} \quad \text{and} \quad F = \{ \circ\bullet, \circ\circ, \circ\bullet\bullet \} \]

\[X_F = \{ x \in A^\mathbb{Z} \mid \text{there is no element of } F \text{ in } x \} \]

Called a subshift.

Called a subshift of finite type (SFT) if finite number of constraints.
\[A = \{ \bullet, \circ, \bullet, \circ, \bullet \} \quad \text{and} \quad \mathcal{F} = \{ \circ\bullet, \bullet\circ, \circ\bullet\bullet \} \]

\[X_{\mathcal{F}} = \{ x \in A^{\mathbb{Z}} \mid \text{there is no element of } \mathcal{F} \text{ in } x \} \]

Called a subshift.
Called a subshift of finite type (SFT) if finite number of constraints.

The Domino Problem on \(\mathbb{Z} \):

Input: \(A, \mathcal{F} \).
Output: YES if \(X_{\mathcal{F}} \neq \emptyset \), NO otherwise.
Theorem (folklore):

$DP(\mathbb{Z})$ is decidable.
Theorem (folklore):

\(DP(\mathbb{Z}) \) is decidable.
Theorem (folklore):

$DP(\mathbb{Z})$ is decidable.

$A = \{ \circ, \bullet, \circ \}$

$\mathcal{F} = \{ \circ \circ , \bullet \bullet , \circ \circ \}$
\[A = \{ \begin{array}{cccc}
\text{Red} & \text{Blue} & \text{Black} & \text{Yellow} \\
\end{array} \} \]

\[\mathcal{F} = \{ \begin{array}{c}
\begin{array}{c}
\text{Red} \\
\text{Blue} \\
\text{Black} \\
\text{Yellow}
\end{array}
\end{array} \ldots \} \]
\[A = \{ \text{ }
\begin{array}{c}
\text{ }
\end{array}
\} \quad F = \{ \text{ }
\begin{array}{c}
\text{ }
\end{array}
\} \]

The Domino Problem on \(\mathbb{Z}^2 \):

Input: \(A, F \).

Output: YES if \(X_F \neq \emptyset \), NO otherwise.
\[\mathcal{A} = \{ \ \square, \ [\square] \} \quad \mathcal{F} = \{ \ [\square \square], \ [\square \square \square], \ [\square \square] \} \]

\[X_{\mathcal{F}} = \{ x \in \mathcal{A}^{\mathbb{Z}^2} \mid \text{there is no element of } \mathcal{F} \text{ in } x \} \]
\[A = \{ \begin{array}{} \text{square} \end{array}, \begin{array}{} \text{square} \end{array} \} \quad F = \{ \begin{array}{} \text{rectangle} \end{array}, \begin{array}{} \text{rectangle} \end{array}, \begin{array}{} \text{rectangle} \end{array} \} \]

\[X_F = \{ x \in A^{\mathbb{Z}^2} \mid \text{there is no element of } F \text{ in } x \} \]
The Domino Problem on \mathbb{Z}^2:

Input: \mathcal{A}, \mathcal{F}.

Output: YES if $X_{\mathcal{F}} \neq \emptyset$, NO otherwise.
Theorem (Berger 66, Robinson 71, Mozes 89, Kari 96...):

$DP(\mathbb{Z}^2)$ is undecidable.
Theorem (Berger 66, Robinson 71, Mozes 89, Kari 96...):

$DP(\mathbb{Z}^2)$ is undecidable.

Reduction to the Halting Problem.
$X_{H,V}:$

H and V SFTs on \mathbb{Z} with alphabet \mathcal{A}.
$X_{H,V}$:

H and V SFTs on \mathbb{Z} with alphabet \mathcal{A}. $X_{H,V}$ is the SFT on \mathbb{Z}^2 using \mathcal{A} with lines in H and columns in V.
\[\mathcal{F}(H) = \{ \bullet\bullet, \circ\circ \} \]
\(\mathcal{F}(H) = \{ \bullet \bullet, \circ \circ \} \)
\(\mathcal{F}(V) = \{ \bullet \bullet, \circ \circ \} \)
\(\mathcal{F}(H) = \{ \bullet\bullet, \circ\circ \} \)

\(\mathcal{F}(V) = \{ \bullet\bullet, \circ\circ \} \)

Compatible
\[\mathcal{F}(H) = \{ \bullet\bullet, \circ\circ \} \]

\[\mathcal{F}(V) = \{ \circ\circ\circ, \bullet\bullet\bullet, \bullet\bullet \} \]
\(\mathcal{F}(H) = \{ \bullet \bullet , \circ \circ \} \)

\(\mathcal{F}(V) = \{ \circ \circ \circ , \bullet \circ \circ \circ , \bullet \bullet \bullet \} \)

Incompatible
DP_H:

H an SFT on \mathbb{Z}.

DP_H:

H an SFT on \mathbb{Z}.

Input: set of vertical forbidden patterns \mathcal{F}_V.

Remark: The answer depends on H!
\[DP_H:\]

\(H\) an SFT on \(\mathbb{Z}\).
Input: set of vertical forbidden patterns \(\mathcal{F}_V\).
Output: \(YES\) if \(X_{H,V} \neq \emptyset\), \(NO\) otherwise.
DP_H:

H an SFT on \(\mathbb{Z} \).

Input: set of vertical forbidden patterns \(\mathcal{F}_V \).

Output: YES if \(X_{H,V} \neq \emptyset \), NO otherwise.

Remark:

The answer depends on \(H \)!
\[H = \]
\[H = \]

\begin{tikzpicture}
 \node[draw, circle, fill=blue!20] (A) at (0,0) {};
 \node[draw, circle, fill=yellow!20] (B) at (1,1) {};
 \node[draw, circle, fill=pink!20] (C) at (1,-1) {};
 \draw[->] (A) to (B);
 \draw[->] (B) to (C);
 \draw[->] (C) to (A);
\end{tikzpicture}
\[H = \]
$H = \begin{array}{c}
\text{Diagram of a graph with nodes and edges.}
\end{array}$
\[H = \]

\[DP_H \] is decidable with this \(H \).
$H =$
\[H = \]

\[\begin{array}{ccc}
 & \rightarrow & \\
 \downarrow & & \downarrow \\
 \circ & \rightarrow & \circ \\
 & \rightarrow & \\
 \downarrow & & \downarrow \\
 \circ & \rightarrow & \circ \\
\end{array} \]
$H =$
$H =$
$H =$
\[H = \]

\[DP_H \] is decidable with this \(H \).
$H = \ldots$
\(H = \)
$H = \text{DP}$

H is decidable with this.
\(H = \)

\(DP_H \) is decidable with this \(H \).
∀ v, v ⇒ reflexive type
\[\forall \nu, \nu \Rightarrow \text{reflexive type} \]
\[\forall \nu, \nu, \nu \Rightarrow \text{symmetric type} \]
\[\forall v, \quad v \implies \text{reflexive type} \]

\[\forall v, w, \quad v \lor w \implies \text{symmetric type} \]

\[\implies \text{state-split cycle type} \]
Question:

These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.

Idea of the proof:
We reduce to $DP(\mathbb{Z}_2)$. We show that for any Y SFT on \mathbb{Z}_2, there are vertical rules V^Y so that X_H, V^Y reproduces the configurations of Y.
Question:
These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.
Question:
These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.

Idea of the proof:
We reduce to...
Question:
These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.

Idea of the proof:
We reduce to... $DP(\mathbb{Z}^2)$.
Question:
These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.

Idea of the proof:
We reduce to... $DP(\mathbb{Z}^2)$.
We show that for any Y SFT on \mathbb{Z}^2,
Question:
These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.

Idea of the proof:
We reduce to... $DP(\mathbb{Z}^2)$.
We show that for any Y SFT on \mathbb{Z}^2, there are vertical rules V_Y.
Question:
These are examples with easy decidability. What about other Hs?

Theorem (Aubrun-E.-Sablik, 2020):
For any other H with length-2 constraints, DP_H is undecidable.

Idea of the proof:
We reduce to... $DP(\mathbb{Z}^2)$.
We show that for any Y SFT on \mathbb{Z}^2, there are vertical rules V_Y so that X_{H,V_Y} reproduces the configurations of Y.
Proposition (Aubrun-E.-Sablik, 2020):

For any Y SFT on \mathbb{Z}^2, for any “complicated enough” H with length-2 constraints, there is some V_Y so that X_{H,V_Y} reproduces the configurations of Y.

Thank you for your attention!
Possible extensions:
Possible extensions:

- H with more complex constraints

 $\mathcal{A} = \{a, b\}$

 $\mathcal{F} = \{aba, bab, bbb\}$
Possible extensions:

- H with more complex constraints
 \[\mathcal{A} = \{a, b\} \]
 \[\mathcal{F} = \{aba, bab, bbb\} \]

- higher dimension with H on \mathbb{Z}^k, input V on \mathbb{Z}^{d-k}, $X_{H,V}$ on \mathbb{Z}^d.
\[H = (\alpha, \Gamma, \gamma) \quad (\beta, \gamma) \quad (b, C^1, c) \]

\[Y = \{\tau_1, \tau_2, \tau_3\} \]
\[H = \begin{array}{c}
\gamma \\
\alpha \\
\beta \\
\Gamma
\end{array} \quad \begin{array}{c}
\gamma \\
a \\
b \\
C^1
\end{array} \quad \begin{array}{c}
c
\end{array} \]

\[Y = \{ \tau_1, \tau_2, \tau_3 \} \]
$H = (\alpha, \Gamma, \gamma, a, C^1, c) \quad Y = \{\tau_1, \tau_2, \tau_3\}$

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>γ</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
\[H = \begin{array}{ccc}
\alpha & \beta & \Gamma \\
\gamma & a & C^1 \\
\end{array} \]

\[Y = \{ \tau_1, \tau_2, \tau_3 \} \]
$H = \begin{array}{c}
\alpha \\
\Gamma \\
\gamma
\end{array} \begin{array}{c}
\beta \\
\gamma \\
\alpha
\end{array} \begin{array}{c}
b \\
a \\
C^1
\end{array} \begin{array}{c}
c
\end{array}$

$Y = \{\tau_1, \tau_2, \tau_3\}$
\(H = \alpha \Gamma \gamma \)

\[Y = \{\tau_1, \tau_2, \tau_3\} \]
\[H = \alpha \Gamma \beta \gamma \alpha \beta \gamma \alpha \]

\[Y = \{ \tau_1, \tau_2, \tau_3 \} \]
Table of the main cases, each of them illustrated with an example.

<table>
<thead>
<tr>
<th>Loops</th>
<th>No loop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 1.1</th>
<th>Case 1.2</th>
<th>Case 1.3</th>
<th>Case 2.1</th>
<th>Case 2.2</th>
<th>Case 3.1</th>
<th>Case 3.2</th>
<th>Case 3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>