Median in median graphs in linear time EJCIM 2020

Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, Yann Vaxès

Aix-Marseille Université, Laboratoire d'Informatique et Systèmes

17 Juin 2020

Prelim	inaries
000	

Preliminaries

Preliminaries	Halfspaces	Median set in G
000	000000	0000

Definition (Distance)

For each $u, v \in V$, d(u, v) is the minimum number of edges in a (u, v)-path.

Preli	min	aries	
000			

Median set in G

Median set

Definition (Distance)

For each $u, v \in V$, d(u, v) is the minimum number of edges in a (u, v)-path.

Definition (Median function)

Let $w: V \to \mathbb{R}^+$ be a weight function $F_w(x) = \sum_{v \in V} w(v) d(x, v)$

Pre	im	ina	aries	
000	>			

Definition (Distance)

For each $u, v \in V$, d(u, v) is the minimum number of edges in a (u, v)-path.

Definition (Median function)

Let $w: V o \mathbb{R}^+$ be a weight function $F_w(x) = \sum_{v \in V} w(v) d(x,v)$

Definition (Median set)

 $\operatorname{Med}_w(G) = \operatorname{arg\,min} F_w$

Pre	im	ina	aries	
000	>			

Definition (Distance)

For each $u, v \in V$, d(u, v) is the minimum number of edges in a (u, v)-path.

Definition (Median function)

Let $w: V o \mathbb{R}^+$ be a weight function $F_w(x) = \sum_{v \in V} w(v) d(x,v)$

Definition (Median set)

 $\operatorname{Med}_w(G) = \operatorname{arg\,min} F_w$

Preli	nina	ries
000		

Definition (Distance)

For each $u, v \in V$, d(u, v) is the minimum number of edges in a (u, v)-path.

Definition (Median function)

Let $w: V \to \mathbb{R}^+$ be a weight function $F_w(x) = \sum_{v \in V} w(v) d(x, v)$

Definition (Median set)

 $\operatorname{Med}_w(G) = \operatorname{arg\,min} F_w$

Goal : Compute $Med_w(G)$ faster than the distance matrix of G

Preliminaries
000

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Pre	lim	ina	ries
00			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Pre	lim	ina	ries
00			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Pre	lim	ina	ries
00			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$orall u,v,w\in V$$
, $|I(u,v)\cap I(u,w)\cap I(v,w)|=1$

Prel	imi	nai	ries
00)		

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Prel	imi	nai	ries
00)		

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Pre	lim	ina	ries
00			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$orall u,v,w\in V$$
, $|I(u,v)\cap I(u,w)\cap I(v,w)|=1$

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$orall u,v,w\in V$$
, $|I(u,v)\cap I(u,w)\cap I(v,w)|=1$

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Prelimin	aries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Pre	lim	ina	ries
00			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Prel	imi	nai	ries
00)		

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Grids :

Prel	imi	nai	ries
00)		

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

$$\forall u, v, w \in V$$
, $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$

Hypercubes :

Pre	lim	ina	ries
00			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Median graphs

Definition (Interval)

$$I(u,v) = \{x \in V : d(u,v) = d(u,x) + d(x,v)\}.$$

Definition (Median graph)

Preliminaries	Halfspaces	Median set in G
000	00000	0000

Prel	im	iin	ari	es
000				

Halfspaces ○●○○○○

Θ -classes

Definition (Oppositeness relation Θ_0)

 $e\Theta_0 e'$ iff e and e' are two edges on the opposite sides of a square

Halfspaces ○●○○○○ $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Θ -classes

Definition (Oppositeness relation Θ_0)

 $e\Theta_0 e'$ iff *e* and *e'* are two edges on the opposite sides of a square

Definition (Parallelism relation Θ)

 $\Theta=\Theta_0^*$ is the reflexive and transitive closure of Θ_0

Halfspaces ○●○○○○ Median set in G

Θ -classes

Definition (Oppositeness relation Θ_0)

 $e\Theta_0 e'$ iff e and e' are two edges on the opposite sides of a square

Definition (Parallelism relation Θ)

 $\Theta=\Theta_0^*$ is the reflexive and transitive closure of Θ_0

Definition (Θ -classes)

The $\Theta\text{-}{\rm classes}$ denotes the equivalence classes of the relation Θ

Computation of the Θ -classes in O(m)

Theorem

The Θ -classes of a median graph with m edges can be computed in O(m) time

Computation of the Θ -classes in O(m)

Theorem

The Θ -classes of a median graph with m edges can be computed in O(m) time

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Halfspaces (1/2)

Definition (Halfspaces)

Each Θ -classe split *G* in two convex and gated subgraphs called halfspaces

Definition (Convexity)

 $S \subseteq V$ is convex if

$$\forall u, v \in S, I(u, v) \subseteq S$$

Definition (Gated set)

$$\forall x \in V \setminus S, \exists x' \in S, \forall y \in S, x' \in I(x, y)$$

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Halfspaces (1/2)

Definition (Halfspaces)

Each Θ -classe split *G* in two convex and gated subgraphs called halfspaces

Definition (Convexity)

 $S \subseteq V$ is convex if

$$\forall u, v \in S, I(u, v) \subseteq S$$

Definition (Gated set)

$$\forall x \in V \setminus S, \exists x' \in S, \forall y \in S, x' \in I(x, y)$$

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Halfspaces (1/2)

Definition (Halfspaces)

Each Θ -classe split *G* in two convex and gated subgraphs called halfspaces

Definition (Convexity)

 $S \subseteq V$ is convex if

$$\forall u, v \in S, I(u, v) \subseteq S$$

Definition (Gated set)

$$\forall x \in V \setminus S, \exists x' \in S, \forall y \in S, x' \in I(x, y)$$

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Halfspaces (1/2)

Definition (Halfspaces)

Each Θ -classe split *G* in two convex and gated subgraphs called halfspaces

Definition (Convexity)

 $S \subseteq V$ is convex if

$$\forall u, v \in S, I(u, v) \subseteq S$$

Definition (Gated set)

$$\forall x \in V \setminus S, \exists x' \in S, \forall y \in S, x' \in I(x, y)$$

Preliminaries

Halfspaces 0000●0 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Halfspaces (2/2)

Definition (Boundaries)

The boundary of a halfspace is :

$$\partial H' = \{ u \in H' : \exists v \in H, uv \in \Theta \}$$

Preliminar	ries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Peripheral halfspace

Definition (Peripheral halfspace)

A halfspace *H* is called peripheral if $H = \partial H$.

Prelimina	iries
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Peripheral halfspace

Definition (Peripheral halfspace)

A halfspace *H* is called peripheral if $H = \partial H$.

Prel	im	ina	arie	s
000	,			

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{0000} \end{array}$

Peripheral halfspace

Definition (Peripheral halfspace)

A halfspace *H* is called peripheral if $H = \partial H$.

Property

If a halfspace H of G maximizes $d(v_0, H)$ for v_0 in V, then H is a peripheral halfspace

Prel	im	ina	aries
000			

Median set in ${\it G}$

Preliminar	ies
000	

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	im	ina	arie	s
000	,			

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	im	ina	arie	s
000	,			

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	im	ina	arie	s
000	,			

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	im	ina	arie	s
000	,			

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	imi	na	ries
000			

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	imi	na	ries
000			

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Preliminar	ies
000	

 $\begin{array}{l} \text{Median set in } G \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Preliminar	ies
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Preliminar	ies
000	

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \circ \bullet \circ \circ \end{array}$

Majority Rule

$$\operatorname{Med}_w(G) = \cap \{H \mid w(H) \ge \frac{1}{2}w(G)\}$$

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ-classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Preli	mi	na	ries
000			

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prelim	ina	ries
000		

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prelim	inaries
000	

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prelim	inaries
000	

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prelim	inaries
000	

 $\begin{array}{c} \text{Median set in } G \\ \text{OO} \bullet \text{O} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Prel	im	in	ari	es
000				

 $\begin{array}{l} \text{Median set in } G \\ \text{0000} \end{array}$

Algorithm

Median $(G = (V, E), \Theta)$:

Order the Θ -classes

For Each Θ -class Θ :

Compute $w(H) = w(\partial H)$

Deduce the majoritary and minoritary halfspace

Direct each edge in Θ from the minoritary halfspace to the majoritary one

Report the weights of H

Preliminaries

Halfspaces

 $\begin{array}{c} \text{Median set in } {\cal G} \\ \text{000} \bullet \end{array}$

Median set computation in O(m) time

Theorem

For each median graph G with m edges and the weighted function w, given the Θ -classes, $Med_w(G)$ can be computed in optimal linear time O(m)

Thank you!