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Median set

Definition (Distance)
For each u, v ∈ V , d(u, v) is the minimum number of edges in a
(u, v)-path.

Definition (Median function)

Let w : V → R+ be a weight function
Fw (x) =

∑
v∈V w(v)d(x , v)

Definition (Median set)
Medw (G ) = arg minFw

Goal : Compute Medw (G ) faster than the distance matrix of G
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Median graphs

Definition (Interval)
I (u, v) = {x ∈ V : d(u, v) = d(u, x) + d(x , v)}.

Definition (Median graph)
∀u, v ,w ∈ V , |I (u, v) ∩ I (u,w) ∩ I (v ,w)| = 1

Trees :
u v

w

m(u, v, w)
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Definition (Interval)
I (u, v) = {x ∈ V : d(u, v) = d(u, x) + d(x , v)}.

Definition (Median graph)
∀u, v ,w ∈ V , |I (u, v) ∩ I (u,w) ∩ I (v ,w)| = 1
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Definition (Interval)
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Definition (Median graph)
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Definition (Oppositeness relation Θ0)
eΘ0e

′ iff e and e ′ are two edges on the
opposite sides of a square

Definition (Parallelism relation Θ)
Θ = Θ∗0 is the reflexive and transitive closure
of Θ0

Definition (Θ-classes)
The Θ-classes denotes the equivalence classes
of the relation Θ
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O(m) time



Preliminaries Halfspaces Median set in G

Computation of the Θ-classes in O(m)

Theorem
The Θ-classes of a median graph with m edges can be computed in
O(m) time

f(u)

f(v)

u

v



Preliminaries Halfspaces Median set in G

Halfspaces (1/2)

Definition (Halfspaces)
Each Θ-classe split G in two convex and gated
subgraphs called halfspaces

Definition (Convexity)
S ⊆ V is convex if
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∀x ∈ V \ S , ∃x ′ ∈ S , ∀y ∈ S , x ′ ∈ I (x , y)

ΘH H ′
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Each Θ-classe split G in two convex and gated
subgraphs called halfspaces
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Halfspaces (2/2)

Definition (Boundaries)
The boundary of a halfspace is :

∂H ′ = {u ∈ H ′ : ∃v ∈ H, uv ∈ Θ}

H ′

H

∂H ′∂H
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Peripheral halfspace

Definition (Peripheral halfspace)
A halfspace H is called peripheral if H = ∂H.

Property
If a halfspace H of G maximizes d(v0,H) for v0 in V , then H is a
peripheral halfspace

v0

H1

H2
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Property (Majority rule)

Medw (G ) = ∩{H | w(H) ≥ 1
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w(H) = 4 w(H ′) = 6

x x′
Fw(x′) = Fw(x) + w(H)− w(H′)

< 0

< Fw(x)
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Algorithm

Median (G = (V ,E ), Θ) :
Order the Θ-classes
For Each Θ-class Θ :

Compute w(H) = w(∂H)

Deduce the majoritary and minoritary
halfspace

Direct each edge in Θ from the minoritary
halfspace to the majoritary one

Report the weights of H
Return the sinks
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Median set computation in O(m) time

Theorem
For each median graph G with m edges and the weighted function
w , given the Θ-classes, Medw (G ) can be computed in optimal
linear time O(m)
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